タグ「不等号」の検索結果

250ページ目:全4604問中2491問~2500問を表示)
津田塾大学 私立 津田塾大学 2013年 第4問
実数$\alpha>1$に対して
\[ y=\alpha x^2+(1-\alpha)x \]
で表される曲線を$C$とする.

(1)$C$と$x$軸および直線$x=1$で囲まれた$2$つの部分の面積の和$S(\alpha)$を求めよ.
(2)$S(\alpha)$が最小となるような$\alpha$の値を求めよ.
愛知工業大学 私立 愛知工業大学 2013年 第2問
$xy$平面において,曲線$\displaystyle y=\frac{1}{x} (x>0)$を$C_1$とする.

(1)点$(x,\ y)$が曲線$C_1$上を動くとき,$x^2+2y$の最小値$k$を求めよ.
(2)$(1)$の$k$の値に対して,曲線$x^2+2y=k$を$C_2$とする.曲線$C_2$と$x$軸の正の部分との交点を$(a,\ 0)$とする.このとき,$2$つの曲線$C_1$,$C_2$および直線$x=a$で囲まれた部分の面積を求めよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第4問
$a,\ d$は$ad \neq 0$をみたす実数とする.$\mathrm{O}$を原点とする座標平面上において,行列$A=\left( \begin{array}{cc}
a & -1 \\
0 & d
\end{array} \right)$の表す$1$次変換(移動)を$f$とし,以下の$2$つの条件をみたす直線$\ell$がただ$1$つ存在するときを考える.

$(ⅰ)$ $\ell$は$\mathrm{O}$を通る.
$(ⅱ)$ $f$によって,$\ell$上の点はすべて$\ell$と垂直に交わるある直線$m$上に移される.

このとき,次の問いに答えよ.

(1)$a$と$d$の関係式を求めよ.
(2)$d>0$とする.$\ell$上に$\mathrm{O}$からの距離が$1$で$x$座標が正となる点$\mathrm{P}$をとり,$\mathrm{P}$の$f$による像を$\mathrm{Q}$とする.線分$\mathrm{OQ}$の長さを求めよ.また,直線$\mathrm{PQ}$と$y$軸が交わる点を$\mathrm{R}$とするとき,線分$\mathrm{OR}$の長さが最小となるように$a$と$d$の値を定めよ.
北里大学 私立 北里大学 2013年 第1問
次の$[ ]$にあてはまる答を記せ.ただし,$(5)$において,必要ならば$\log_{10}2=0.3010$を用いてよい.

(1)$\mathrm{OA}:\mathrm{OB}=1:3$である三角形$\mathrm{OAB}$において,辺$\mathrm{AB}$の中点を$\mathrm{M}$,線分$\mathrm{OM}$を$1:2$に内分する点を$\mathrm{N}$とし,$\angle \mathrm{AOB}$の大きさを$\theta$とする.

(i) $\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,$\overrightarrow{a}$と$\overrightarrow{b}$を用いて$\overrightarrow{\mathrm{NA}}$を表すと,$\overrightarrow{\mathrm{NA}}=[ ] \overrightarrow{a}-[ ] \overrightarrow{b}$である.
(ii) $\overrightarrow{\mathrm{ON}}$と$\overrightarrow{\mathrm{NA}}$が垂直であるとき,$\cos \theta$の値は$[ ]$である.

(2)$(x+2y+3z)^6$の展開式における$x^4y^2$の係数は$[ ]$であり,$x^3y^2z$の係数は$[ ]$である.
(3)点$(x,\ y)$が不等式$x^2+y^2 \leqq 4$の表す領域を動くとする.このとき,$3x+y$は,$x=[ ]$,$y=[ ]$において最大値$[ ]$をとり,$x=[ ]$,$y=[ ]$において最小値$[ ]$をとる.
(4)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$つの袋があり,$\mathrm{A}$には赤球$2$個と白球$2$個,$\mathrm{B}$には白球$1$個と青球$3$個,さらに,$\mathrm{C}$には赤球$2$個と白球$1$個と青球$1$個が入っている.いま,$\mathrm{A}$から$1$個の球を取り出し,$\mathrm{B}$から$1$個の球を取り出し,$\mathrm{C}$から$1$個の球を取り出す.

(i) 取り出した$3$個の球の色が$1$種類となる確率は$[ ]$である.
(ii) 取り出した$3$個の球の色が$2$種類となる確率は$[ ]$である.
(iii) 取り出した$3$個の球の色が$3$種類となる確率は$[ ]$である.

(5)条件$a_1=5$,$a_{n+1}=2a_n-3$によって定まる数列$\{a_n\}$の一般項は$a_n=[ ]$で与えられる.この数列の初項から第$n$項までの和を$S_n$とおくとき,$S_8$の値は$[ ]$であり,不等式$\displaystyle \frac{S_n}{3}>n+16666$を満たす正の整数$n$のうちで最小のものは$[ ]$である.
東北工業大学 私立 東北工業大学 2013年 第1問
$2$次関数$y=ax^2+bx+12 (a \neq 0)$のグラフがある.この関数のグラフの軸は,直線$x=-2$であるとする.

(1)この関数のグラフが点$(2,\ 0)$を通るならば,頂点の$y$座標は$[][]$である.
(2)定義域$-3 \leqq x \leqq 2$に対する値域が$-4 \leqq y \leqq 60$ならば,$a=[][]$,$b=[][]$である.
(3)このグラフを$y$軸方向に$-4$だけ平行移動させたとき$x$軸と接するならば,$a=[][]$,$b=[][]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2013年 第4問
$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$とする.時刻$t$における座標平面上の点$\mathrm{P}(x,\ y)$の位置が$x=\sin t$,$y=\sin 2t$で与えられている.

(1)原点$\mathrm{O}(0,\ 0)$から点$\mathrm{P}$が最も遠方にあるとき,$2$点$\mathrm{O}$,$\mathrm{P}$間の距離は$[ ]$であり,そのときの点$\mathrm{P}$の速度$\overrightarrow{v}$は$\overrightarrow{v}=[ ]$である.
(2)点$\mathrm{P}$の軌跡を$y=f(x)$と表すと,$f(x)=[ ]$である.ただし$x$の範囲は$[ ]$である.
(3)$(2)$で求めた軌跡と$x$軸とで囲まれてできる図形の面積は$[ ]$である.
獨協大学 私立 獨協大学 2013年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)塔の高さを測るために,塔から水平に$380 \; \mathrm{m}$離れた地点で塔の先端の仰角を測ったところ,$59^\circ$であった.目の高さを$1.6 \; \mathrm{m}$とすると,塔の高さは$[ ] \, \mathrm{m}$である.(小数第$3$位を四捨五入すること.また,$\sin 59^\circ=0.8572$,$\cos 59^\circ=0.5150$,$\tan 59^\circ=1.6643$とする.)
(2)連立不等式$8x-12<4(x+2)<6x$を解くと,$[ ]$である.
(3)点$(0,\ a)$から円$x^2+y^2=1$に引いた$2$本の接線の傾きを$a$を用いて表すと,$[ ]$と$[ ]$である.(ただし,$|a|>1$とする.)
(4)ベクトル$\overrightarrow{a}=(1,\ 2,\ 1)$とベクトル$\overrightarrow{b}=(2,\ 1,\ -1)$のなす角を$\theta_1 (0^\circ \leqq \theta_1 \leqq 180^\circ)$とし,ベクトル$\overrightarrow{c}=(1,\ -1,\ 2)$とベクトル$\overrightarrow{d}=(-4,\ 2,\ 3)$のなす角を$\theta_2 (0^\circ \leqq \theta_2 \leqq 180^\circ)$とする.このとき,$\theta_1$と$\theta_2$の大小関係は$[ ]$である.
(5)次の和を求めよ.

(i) $1 \cdot 1+2 \cdot 3+3 \cdot 5+\cdots +n \cdot (2n-1)=[ ]$
(ii) $1 \cdot 1^2+2 \cdot 3^2+3 \cdot 5^2+\cdots +n \cdot (2n-1)^2=[ ]$

(6)次の値を求めよ.
$(ⅰ) \sqrt[6]{64}=[ ] \qquad (ⅱ) \sqrt[5]{0.00001}=[ ]$
$(ⅲ) \sqrt[3]{216}=[ ] \qquad \tokeishi \sqrt[3]{\sqrt{729}}=[ ]$
(7)$2$次方程式$x^2+2kx+(2k+3)=0$の$2$つの解を$\alpha,\ \beta$とするとき,$0<\alpha<1$,$2<\beta<3$となるような定数$k$の値の範囲は,$[ ]$である.
(8)赤色の球が$2$個,青色の球が$3$個,黄色の球が$4$個入った袋がある.この袋から同時に$3$個の球を取り出すとき,取り出した球に赤色の球が含まれない確率は$[ ]$であり,取り出した球の色が$2$種類である確率は$[ ]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2013年 第1問
次の問いに答えよ.

(1)$0 \leqq \theta<2\pi$とする.$2 \sin^2 \theta-3 \cos \theta-3 \geqq 0$を満足する$\theta$の範囲は$[ ]$であり,この$\theta$に対する$\tan \theta$の最大値は$[ ]$である.
(2)数字$1$のカード$1$枚,数字$3$のカード$2$枚,数字$a$($a$は$1,\ 3,\ 6$以外の正の整数)のカード$2$枚,数字$6$のカード$b$枚の中から無作為に$1$枚のカードを取り出したとき,そのカードに記された数字の期待値が$\displaystyle \frac{9}{2}$になった.このとき$(a,\ b)$の組をすべて求めると$(a,\ b)=[ ]$である.
(3)$f(x)=x^6-2x^4-x^2+2$とする.$f(x)$を整数の範囲で因数分解すると$[ ]$となり,複素数の範囲で因数分解すると$[ ]$となる.
藤田保健衛生大学 私立 藤田保健衛生大学 2013年 第3問
次の問いに答えよ.

(1)$f(t)=be^{at}$($a,\ b$:定数)を微分した答えを$f(t)$を用いて表すと,
\[ \frac{d}{dt}f(t)=[ ] \qquad \cdots\cdots① \]
である.
(2)物体が水平面に対し垂直な方向に落下するものとする.デカルトは時刻$t$での物体の速度について,速度が落下距離に比例するものと考えた.これに従えば,時刻$t$での物体の落下距離を$f(t)$とし,$f(0)=x_0>0$,その比例定数を$c_0>0$とするとき,$①$を満たすような関数が$f(t)=be^{at}$の形で表わされることを用いると$f(t)=[ ]$である.
(3)一方,ガリレオは速度が落下した時間に比例すると考えた.時刻$T$で落下しはじめた物体の,時刻$t (t \geqq T)$での高さを$g(t)$とし,$g(T)=x_1>0$,その比例定数を$c_1>0$とするとき,$g(t)=[ ]$である.
東北工業大学 私立 東北工業大学 2013年 第5問
$2$次関数$f(x)$があり,$f(0)=24$である.また,その導関数を$f^\prime(x)=ax-b$とおく.ただし,$a,\ b$はともに定数であり,$a>0$とする.このとき,

(1)$a=[][],\ b=[][]$ならば,$f(1)=f(3)=0$である.
(2)$a=[][],\ b=[][]$ならば,$x=2.5$のとき$f(x)$が極小となり,その極小値は$-1$である.
(3)$f^\prime(1.5)=25$ならば,$f(3)=[][]$である.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。