タグ「不等号」の検索結果

233ページ目:全4604問中2321問~2330問を表示)
福井大学 国立 福井大学 2013年 第2問
数列$\{a_n\}$が次の関係式を満たしている.
\[ a_1=-1,\quad 5a_{n+1}-4a_n=1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,以下の問いに答えよ.ただし,必要であれば$\log_{10}2=0.3010$として計算してよい.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$\displaystyle S_n=\sum_{k=1}^n a_k$とおくとき,$S_n$を$n$の式で表せ.
(3)$S_n>0$となる最小の$n$を求めよ.
福井大学 国立 福井大学 2013年 第4問
双曲線$\displaystyle C:\frac{x^2}{16}-\frac{y^2}{9}=1$上に点$\displaystyle \mathrm{A} \left( \frac{4}{\cos \theta},\ 3 \tan \theta \right)$,$\mathrm{B}(4,\ 0)$をとる.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\mathrm{A}$における$C$の接線と$\mathrm{B}$における$C$の接線との交点を$\mathrm{D}$とし,$C$の焦点のうち$x$座標が正であるものを$\mathrm{F}$とおく.このとき,以下の問いに答えよ.

(1)$\mathrm{D}$の座標を求めよ.
(2)$\displaystyle \tan \frac{\theta}{2}=m$とおく.$\tan \angle \mathrm{DFB}$を$m$を用いて表せ.
(3)直線$\mathrm{DF}$は$\angle \mathrm{AFB}$を$2$等分することを証明せよ.
福井大学 国立 福井大学 2013年 第1問
関数$f(x)$を$f(x)=x \sin x$とおく.また,曲線$y=f(x)$上の点$(\alpha,\ f(\alpha))$における接線の方程式を$y=g(x)$とおく.$\alpha>0$のとき,以下の問いに答えよ.

(1)$g(x)$を$\alpha$を用いて表せ.
(2)直線$y=g(x)$が原点を通るような最小の$\alpha$を$\alpha_1$とし,$\alpha=\alpha_1$のときの$g(x)$を$h(x)$とおく.$\alpha_1$の値と$h(x)$を求めよ.
(3)$0 \leqq x \leqq \alpha_1$において$h(x) \geqq f(x)$であることを示せ.
(4)$0 \leqq x \leqq \alpha_1$において直線$y=h(x)$と曲線$y=f(x)$で囲まれてできる図形の面積を求めよ.
福井大学 国立 福井大学 2013年 第4問
$\mathrm{O}$を原点とする$xy$平面上に$2$点$\mathrm{P}(\cos t,\ 0)$,$\mathrm{Q}(0,\ \sin t)$をとる.ここで$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$とする.直線$\mathrm{PQ}$に関して$\mathrm{O}$と対称な点を$\mathrm{R}$とするとき,以下の問いに答えよ.ただし,直線$\mathrm{PQ}$が原点$\mathrm{O}$を通るときは$\mathrm{R}$を$\mathrm{O}$と定める.

(1)点$\mathrm{R}$の座標が$(\sin 2t \sin t,\ \sin 2t \cos t)$で表されることを証明せよ.
(2)$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$の範囲を動くとき,点$\mathrm{R}$の描く曲線を$C$と表す.曲線$C$上で,$y$座標が最大となる点の座標を求めよ.
(3)曲線$C$と直線$y=x$で囲まれる図形の面積を求めよ.
福井大学 国立 福井大学 2013年 第3問
次の問いに答えよ.

(1)$m,\ n$を自然数とするとき,次の不定積分を計算せよ.
\[ \int \cos mx \cos nx \, dx \]
(2)$\mathrm{O}$を原点とする$xy$平面上に$2$点$\mathrm{P}(\cos t,\ 0)$,$\mathrm{Q}(0,\ \sin t)$をとる.ここで$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$とする.直線$\mathrm{PQ}$に関して$\mathrm{O}$と対称な点を$\mathrm{R}$とするとき,以下の問いに答えよ.ただし,直線$\mathrm{PQ}$が原点$\mathrm{O}$を通るときは$\mathrm{R}$を$\mathrm{O}$と定める.

(i) $\mathrm{R}$の座標を求めよ.
(ii) $t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$の範囲を動くときに$\mathrm{R}$の描く曲線と,直線$y=x$により囲まれる図形の面積を求めよ.
山口大学 国立 山口大学 2013年 第1問
$x>0,\ x \neq 1$を定義域とする次の$5$つの関数を考える.
\[ \frac{x^2+1}{2},\quad \frac{2x^2}{x^2+1},\quad x,\quad \left( \frac{x+1}{2} \right)^2,\quad \frac{x^2-1}{2 \log x} \]
このとき,次の問いに答えなさい.

(1)上の$5$つの関数の間に$[1]<[2]<[3]<[4]<[5]$の不等式が成立するとすれば,$[1]$から$[5]$にはどの関数が入るか.$x=2$を代入することによりそれらを決定しなさい.ただし,$\log 2=0.693 \cdots$とする.
(2)$[4]<[5]$の部分の不等式を証明しなさい.
(3)$[2]<[3]$の部分の不等式を証明しなさい.
山口大学 国立 山口大学 2013年 第2問
等式$\left( \begin{array}{cc}
2 & 3 \\
3 & 5
\end{array} \right) \left( \begin{array}{c}
1 \\
y
\end{array} \right)=x \left( \begin{array}{c}
1 \\
y
\end{array} \right)$を満たす定数$x,\ y$の組$(x,\ y)$を$(x_1,\ y_1)$,$(x_2,\ y_2)$とする.ただし,$y_1<y_2$とする.このとき,次の問いに答えなさい.

(1)$(x_1,\ y_1)$,$(x_2,\ y_2)$を求めなさい.
(2)次の等式を満たす定数$\alpha,\ \beta$の値を求めなさい.
\[ \alpha \left( \begin{array}{c}
1 \\
y_1
\end{array} \right)+\beta \left( \begin{array}{c}
1 \\
y_2
\end{array} \right)=\left( \begin{array}{c}
2 \\
2
\end{array} \right) \]
(3)数列$\{a_n\},\ \{b_n\}$が,
\[ \left( \begin{array}{c}
a_n \\
b_n
\end{array} \right)=\left( \begin{array}{cc}
2 & 3 \\
3 & 5
\end{array} \right)^n \left( \begin{array}{c}
2 \\
2
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められるとき,$\displaystyle \lim_{n \to \infty}\frac{b_n}{a_n}$を求めなさい.
島根大学 国立 島根大学 2013年 第4問
$x<1$に対して,$f(x)=|x| \log (1-x)$とおく.このとき,次の問いに答えよ.

(1)関数$y=f(x)$は$x=0$で微分可能かどうかを調べよ.
(2)関数$y=f(x)$のグラフと直線$y=-x$の交点を求めよ.
(3)不定積分$\displaystyle \int x \log (1-x) \, dx$を求めよ.
(4)$x \leqq 0$において関数$y=f(x)$のグラフと直線$y=-x$で囲まれた図形の面積$S$を求めよ.
島根大学 国立 島根大学 2013年 第1問
次の問いに答えよ.

(1)$k,\ l$を自然数で,$k>l$とする.$l$から$k$までの$k-l+1$個の自然数から,同じものを繰り返し使うことを許して$3$個取り出して並べた数列を作る.そのうち,$k$と$l$の両方を含む数列の総数を$k$と$l$を用いて表せ.
(2)さいころを$3$回投げるとき,$3$つ出た目の最大値を$M$,最小値を$m$とし,$R=M-m$とする.$R$の期待値を求めよ.
宮崎大学 国立 宮崎大学 2013年 第5問
座標平面上に,半円$C:x^2+y^2=4$(ただし,$x>0$)と放物線$D:x^2-6y+3=0$がある.半円$C$上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$(ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$)における半円$C$の接線を$\ell$とするとき,次の各問に答えよ.

(1)半円$C$と放物線$D$との交点$\mathrm{Q}$の座標を求めよ.
(2)直線$\ell$が放物線$D$に点$\mathrm{R}$において接するとき,$\theta$の値と点$\mathrm{R}$の座標を求めよ.
(3)$(2)$のとき,半円$C$と放物線$D$および直線$\ell$によって囲まれる部分の面積を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。