タグ「不等号」の検索結果

220ページ目:全4604問中2191問~2200問を表示)
岩手大学 国立 岩手大学 2013年 第3問
座標空間内で$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{B}(0,\ 4,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$を頂点とする四面体$\mathrm{OABC}$を考える.辺$\mathrm{AB}$上の点を$\mathrm{D}$,辺$\mathrm{AC}$上の点を$\mathrm{E}$,線分$\mathrm{DE}$上の点を$\mathrm{P}$とする.線分$\mathrm{DE}$は辺$\mathrm{BC}$に平行とする.$\overrightarrow{\mathrm{AD}}=\alpha \overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{DP}}=\beta \overrightarrow{\mathrm{DE}}$とするとき,次の問いに答えよ.ただし,$\alpha,\ \beta$は実数とし,$0<\alpha<1$,$0<\beta<1$とする.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$,$\alpha$,$\beta$によって表し,次に$\overrightarrow{\mathrm{OP}}$を成分表示せよ.
(2)$\overrightarrow{\mathrm{OP}}$が$\overrightarrow{\mathrm{DE}}$に垂直となる$\mathrm{P}$の座標を$\alpha$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$が$\overrightarrow{\mathrm{DE}}$と$\overrightarrow{\mathrm{AP}}$の両方に垂直となる$\alpha$の値を求めよ.
(4)点$\mathrm{O}$から$\triangle \mathrm{ABC}$に下ろした垂線の交点を$\mathrm{H}$とする.$\mathrm{H}$の座標を求めよ.
岩手大学 国立 岩手大学 2013年 第4問
実数$a>0$と$k>0$に対して$2$つの曲線
\[ C_1:y=ax^2,\quad C_2:y=k \log x \quad (x>0) \]
を考える.ここで,$\log x$は$x$の自然対数とする.$C_1$と$C_2$がただ$1$点を共有し,その点における接線が一致するとき,次の問いに答えよ.

(1)共有点の$x$座標を求めよ.
(2)$k$を$a$を用いて表せ.
(3)$k=2e$のとき,$C_1$,$C_2$および$x$軸で囲まれた部分を$D$とする.$D$の面積$S$を求めよ.ただし,$e$は自然対数の底とする.
(4)(3)の$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
岩手大学 国立 岩手大学 2013年 第3問
以下の問いに答えよ.

(1)不等式$\log_2x>1$を解け.
(2)不等式$\log_{\frac{1}{2}}x>1$を解け.
(3)座標平面上に,
\[ \log_2 (x+y)+\log_{\frac{1}{2}}(x-y) \]
が定義される領域を図示せよ.
(4)座標平面上に,不等式
\[ \log_2 (x+y)+\log_{\frac{1}{2}}(x-y)>1 \]
の表す領域を図示せよ.
宮城教育大学 国立 宮城教育大学 2013年 第1問
以下の問いに答えよ.

(1)$a>0,\ b>0$とする.$a \neq b$であるための必要十分条件は,
\[ \frac{a+b}{2}>\sqrt{ab} \]
であることを示せ.
(2)$a>0,\ b>0,\ a \neq b$とする.
\[ p=a+b-\sqrt{ab},\quad q=\frac{1}{a}+\frac{1}{b}-\frac{1}{\sqrt{ab}} \]
とおくとき,$pq>1$であることを示せ.ただし,必要があれば,(1)の結果を用いてよい.
(3)$a>0,\ b>0,\ ab>1$とする.$x$の$2$次方程式
\[ x^2-\left( a+\sqrt{\frac{a}{b}} \right)x+\frac{a}{b}=0 \]
は,相異なる$2$つの正の実数解をもつことを示せ.
宮城教育大学 国立 宮城教育大学 2013年 第1問
以下の問いに答えよ.

(1)$a>0,\ b>0$とする.$a \neq b$であるための必要十分条件は,
\[ \frac{a+b}{2}>\sqrt{ab} \]
であることを示せ.
(2)$a>0,\ b>0,\ a \neq b$とする.
\[ p=a+b-\sqrt{ab},\quad q=\frac{1}{a}+\frac{1}{b}-\frac{1}{\sqrt{ab}} \]
とおくとき,$pq>1$であることを示せ.ただし,必要があれば,(1)の結果を用いてよい.
宮城教育大学 国立 宮城教育大学 2013年 第2問
関数$f(x)=x^3-3ax$について次の問いに答えよ.ただし,$a$は正の定数である.

(1)関数$y=f(x)$の増減,極値を調べ,そのグラフの概形をかけ.
(2)定数$k$が$0<k \leqq \sqrt{a}$の範囲にあるとき,$-k \leqq x \leqq 2k$における$f(x)$の最大値と最小値を求めよ.
宮城教育大学 国立 宮城教育大学 2013年 第4問
$x>0$のとき,以下の問いに答えよ.

(1)不等式$2 \sqrt{x}>\log x$を示せ.
(2)関数$\displaystyle y=\frac{1-\log x}{x^2}$の増減,極値,グラフの凹凸および変曲点を調べ,そのグラフの概形をかけ.ただし,必要があれば,(1)の結果を用いてよい.
宮城教育大学 国立 宮城教育大学 2013年 第5問
以下の問いに答えよ.

(1)$a>0$のとき,
\[ S(a)=\int_0^{\frac{\pi}{2}} |\sin 2x-a \cos x| \, dx \]
とする.$S(a)$の最小値を求めよ.
(2)$a>2$のとき,$2$曲線$\displaystyle y=\sin 2x,\ y=a \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$y$軸で囲まれる図形を考える.この図形を$x$軸のまわりに$1$回転してできる立体の体積を$a$を用いて表せ.
秋田大学 国立 秋田大学 2013年 第2問
$a,\ b,\ c,\ x,\ y,\ z$はすべて正の実数である.次の問いに答えよ.

(1)不等式$(a^2+b^2+c^2)(x^2+y^2+z^2) \geqq (ax+by+cz)^2$が成り立つことを証明せよ.
(2)(1)において等号が成り立つのはどのようなときかを示せ.
(3)$a^2+b^2+c^2=25$,$x^2+y^2+z^2=36$,$ax+by+cz=30$のとき,$\displaystyle \frac{a+b+c}{x+y+z}$の値を求めよ.
秋田大学 国立 秋田大学 2013年 第1問
円$x^2+y^2=1$を$C_1$とし,点$\mathrm{P}(0,\ -1)$を通り,傾きが$m$の直線を$\ell$とする.ただし,$m>1$である.次の問いに答えよ.

(1)円$C_1$と直線$\ell$の交点のうち,$\mathrm{P}$と異なるものを$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を求めよ.さらに,点$\mathrm{Q}$における円$C_1$の接線の方程式を求めよ.
(2)原点$\mathrm{O}$と点$\mathrm{P}$および(1)の点$\mathrm{Q}$の$3$点を通る円を$C_2$とする.$C_2$の方程式を求めよ.
(3)$m=\sqrt{3}$のとき,円$C_1$と(2)の円$C_2$の両方に接する直線の方程式を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。