タグ「不等号」の検索結果

214ページ目:全4604問中2131問~2140問を表示)
熊本大学 国立 熊本大学 2013年 第3問
半径$1$,中心角$\theta (0<\theta<\pi)$の扇形に内接する円の半径を$f(\theta)$とおく.以下の問いに答えよ.

(1)$f(\theta)$を求めよ.
(2)$0<\theta<\pi$の範囲で$f(\theta)$は単調に増加し,$f^\prime(\theta)$は単調に減少することを示せ.
(3)定積分
\[ \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} f(\theta) \, d\theta \]
を求めよ.
熊本大学 国立 熊本大学 2013年 第3問
半径$1$,中心角$\theta (0<\theta<\pi)$の扇形に内接する円の半径を$f(\theta)$とおく.以下の問いに答えよ.

(1)$f(\theta)$を求めよ.
(2)$0<\theta<\pi$の範囲で$f(\theta)$は単調に増加し,$f^\prime(\theta)$は単調に減少することを示せ.
(3)定積分
\[ \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} f(\theta) \, d\theta \]
を求めよ.
千葉大学 国立 千葉大学 2013年 第6問
整数$p,\ q \ (p \geqq q \geqq 0)$に対して$2$項係数を$\displaystyle \comb{p}{q}=\frac{p!}{q!(p-q)!}$と定める.なお$0!=1$とする.

(1)$n,\ k$が$0$以上の整数のとき,
\[ \comb{n+k+1}{k+1} \times \left( \frac{1}{\comb{n+k}{k}}-\frac{1}{\comb{n+k+1}{k}} \right) \]
を計算し,$n$によらない値になることを示せ.
(2)$m$が$3$以上の整数のとき,和$\displaystyle \frac{1}{\comb{3}{3}}+\frac{1}{\comb{4}{3}}+\frac{1}{\comb{5}{3}}+\cdots +\frac{1}{\comb{m}{3}}$を求めよ.
千葉大学 国立 千葉大学 2013年 第5問
$a,\ b$を実数とし,$a>0$とする.放物線$\displaystyle y=\frac{x^2}{4}$上に$2$点$\displaystyle \mathrm{A} \left( a,\ \frac{a^2}{4} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{b^2}{4} \right)$をとる.点$\mathrm{A}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{A}$と$n_\mathrm{A}$,点$\mathrm{B}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{B}$と$n_\mathrm{B}$とおいたとき,$\ell_\mathrm{A}$と$\ell_\mathrm{B}$が直交しているものとする.$2$つの接線$\ell_\mathrm{A},\ \ell_\mathrm{B}$の交点を$\mathrm{P}$とし,$2$つの法線$n_\mathrm{A},\ n_\mathrm{B}$の交点を$\mathrm{Q}$とする.

(1)$b$を$a$を用いて表せ.
(2)$\mathrm{P},\ \mathrm{Q}$の座標を$a$を用いて表せ.
(3)長方形$\mathrm{AQBP}$の面積が最小となるような$a$の値と,そのときの面積を求めよ.
千葉大学 国立 千葉大学 2013年 第8問
$r$を$1$より大きい実数とする.半径$1$の円$C$の周上に点$\mathrm{Q}$をとる.最初に円$C$の中心$\mathrm{P}$は座標平面の$(0,\ 1)$,点$\mathrm{Q}$は$(0,\ 2)$にあるものとし,円$C$が$x$軸に接しながら$x$軸の正の方向にすべることなく転がっていく.角$\theta$ラジアンだけ回転したとき,半直線$\mathrm{PQ}$上に$\mathrm{PR}=r$となる点$\mathrm{R}$をとる.$\theta$を$0$から$2\pi$まで動かしたときの$\mathrm{R}$の軌跡を考える.

(1)$\alpha,\ \beta$は$0 \leqq \alpha<\beta \leqq 2\pi$をみたし,$\theta=\alpha$のときの$\mathrm{R}$の座標と$\theta=\beta$のときの$\mathrm{R}$の座標とが一致するものとする.$\displaystyle t=\frac{\beta-\alpha}{2}$とおくとき,$r$を$t$を用いて表せ.
(2)(1)において,$\theta$を$\alpha$から$\beta$まで動かしたときの$\mathrm{R}$の軌跡によって囲まれた図形の面積を$S$とする.$S$を$t$を用いて表せ.
(3)$\displaystyle \lim_{r \to \infty} \frac{S}{r^2}$を求めよ.
東京工業大学 国立 東京工業大学 2013年 第4問
正の整数$n$に対し,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲において$\sin 4nx \geqq \sin x$を満たす$x$の区間の長さの総和を$S_n$とする.このとき,$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
東京工業大学 国立 東京工業大学 2013年 第5問
$a,\ b$を正の実数とし,円$C_1:(x-a)^2+y^2=a^2$と楕円$\displaystyle C_2:x^2+\frac{y^2}{b^2}=1$を考える.

(1)$C_1$が$C_2$に内接するための$a,\ b$の条件を求めよ.
(2)$\displaystyle b=\frac{1}{\sqrt{3}}$とし,$C_1$が$C_2$に内接しているとする.このとき,第1象限における$C_1$と$C_2$の接点の座標$(p,\ q)$を求めよ.
(3)(2)の条件のもとで,$x \geqq p$の範囲において,$C_1$と$C_2$で囲まれた部分の面積を求めよ.
筑波大学 国立 筑波大学 2013年 第2問
$n$は自然数とする.

(1)$1 \leqq k \leqq n$を満たす自然数$k$に対して
\[ \int_{\frac{k-1}{2n}\pi}^{\frac{k}{2n}\pi} \sin 2nt \cos t \, dt=(-1)^{k+1} \frac{2n}{4n^2-1} \left( \cos \frac{k}{2n}\pi+\cos \frac{k-1}{2n}\pi \right) \]
が成り立つことを示せ.
(2)媒介変数$t$によって
\[ x=\sin t,\quad y=\sin 2nt \quad (0 \leqq t \leqq \pi) \]
と表される曲線$C_n$で囲まれた部分の面積$S_n$を求めよ.ただし必要なら
\[ \sum_{k=1}^{n-1} \cos \frac{k}{2n}\pi=\frac{1}{2} \left( \frac{1}{\tan \displaystyle\frac{\pi}{4n}} -1 \right) \quad (n \geqq 2) \]
を用いてよい.
(3)極限値$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(図は省略)
東京大学 国立 東京大学 2013年 第2問
$a$を実数とし,$x>0$で定義された関数$f(x),\ g(x)$を次のように定める.
\[ \begin{array}{l}
f(x)=\displaystyle\frac{\cos x}{x} \\
g(x)=\sin x+ax
\end{array} \]
このとき$y=f(x)$のグラフと$y=g(x)$のグラフが$x>0$において共有点をちょうど3つ持つような$a$をすべて求めよ.
東京大学 国立 東京大学 2013年 第5問
次の命題$\mathrm{P}$を証明したい.

命題$\mathrm{P}$ \quad 次の$2$条件(a),(b)をともに満たす自然数($1$以上の整数)$A$が存在する.

(a) $A$は連続する$3$つの自然数の積である.
(b) $A$を$10$進法で表したとき,$1$が連続して$99$回以上現れるところがある.


以下の問いに答えよ.

(1)$y$を自然数とする.このとき不等式
\[ x^3+3yx^2<(x+y-1)(x+y)(x+y+1)<x^3+(3y+1)x^2 \]
が成り立つような正の実数$x$の範囲を求めよ.
(2)命題$\mathrm{P}$を証明せよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。