タグ「不等号」の検索結果

210ページ目:全4604問中2091問~2100問を表示)
広島大学 国立 広島大学 2013年 第1問
放物線$y=2x^2-8$を$C$とする.$x$軸上の点$\mathrm{A}(a,\ 0) \ (a>0)$を通り$C$と接する直線が$2$本あるとき,次の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)$2$つの接点$\mathrm{P},\ \mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta \ (\alpha<\beta)$とする.$\beta-\alpha=3$のとき,$a$の値と$2$本の接線の方程式を求めよ.
(3)$(2)$で求めた$2$本の接線と$C$で囲まれた部分の面積を求めよ.
広島大学 国立 広島大学 2013年 第2問
座標平面上に点$\mathrm{A}(\cos \theta,\ \sin \theta) \ (0<\theta<\pi)$がある.原点を$\mathrm{O}$とし,$x$軸に関して点$\mathrm{A}$と対称な点を$\mathrm{B}$とする.次の問いに答えよ.

(1)$\displaystyle -1< \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}} \leqq \frac{1}{2}$となる$\theta$の範囲を求めよ.
(2)点$\mathrm{P}$を
\[ \overrightarrow{\mathrm{OP}}=2 \overrightarrow{\mathrm{OA}}+\frac{1}{2} \overrightarrow{\mathrm{OB}} \]
で定める.点$\mathrm{P}$から$x$軸に下ろした垂線を$\mathrm{PQ}$とする.$\theta$が(1)で求めた範囲を動くとき,$\triangle \mathrm{POQ}$の面積の最大値を求めよ.
広島大学 国立 広島大学 2013年 第4問
平面上の$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は$|\overrightarrow{\mathrm{OA}}|=|\overrightarrow{\mathrm{OB}}|=1$かつ$\angle \mathrm{AOB}=\theta \ (0<\theta<\pi)$を満たすとする.線分$\mathrm{AB}$の中点を$\mathrm{M}$とする.$t>1$として,点$\mathrm{C}$を$\overrightarrow{\mathrm{OC}}=-t \overrightarrow{\mathrm{OM}}$となるように定める.$\triangle \mathrm{ABC}$の面積を$S$とする.次の問いに答えよ.

(1)$S$を$t$と$\theta$を用いて表せ.
(2)$|\overrightarrow{\mathrm{OC}}|=1$のとき,$S$を$t$のみを用いて表せ.
(3)$|\overrightarrow{\mathrm{OC}}|=1$のとき,$S$が最大となる$t$の値を求めよ.
広島大学 国立 広島大学 2013年 第5問
座標平面上の点で,$x$座標と$y$座標がともに整数である点を格子点という.$n$を$3$以上の自然数とし,連立不等式
\[ x \geqq 0,\quad y \geqq 0,\quad x+y \leqq n \]
の表す領域を$D$とする.格子点$\mathrm{A}(a,\ b)$に対して,領域$D$内の格子点$\mathrm{B}(c,\ d)$が$|a-c|+|b-d|=1$を満たすとき,点$\mathrm{B}$を点$\mathrm{A}$の隣接点という.次の問いに答えよ.

(1)点$\mathrm{O}(0,\ 0)$の隣接点をすべて求めよ.また,領域$D$内の格子点$\mathrm{P}$が直線$x+y=n$上にあるとき,$\mathrm{P}$の隣接点の個数を求めよ.
(2)領域$D$内の格子点のうち隣接点の個数が$4$であるものの個数を求めよ.
(3)領域$D$から格子点を$1$つ選ぶとき,隣接点の個数の期待値が$3$以上となるような$n$の範囲を求めよ.ただし,格子点の選ばれ方は同様に確からしいものとする.
広島大学 国立 広島大学 2013年 第5問
次の問いに答えよ.ただし,$e$は自然対数の底である.

(1)$x \geqq 2$のとき,$x^4e^{-3x} \leqq 16e^{-6}$を示せ.また,これを用いて$\displaystyle \lim_{x \to \infty}x^3e^{-3x}$を求めよ.
(2)$k$を定数とする.$x>0$の範囲で方程式
\[ xe^{-3x}=\frac{k}{x^2} \]
がちょうど$2$つの解$\alpha,\ \beta (\alpha<\beta)$をもつような$k$の値の範囲を求めよ.
(3)$(2)$の$\alpha,\ \beta$が$\beta=2 \alpha$を満たすとき,曲線$y=xe^{-3x} (x>0)$と曲線$\displaystyle y=\frac{k}{x^2} (x>0)$で囲まれた部分の面積を求めよ.
金沢大学 国立 金沢大学 2013年 第1問
座標平面上に2点$\mathrm{P}(\sqrt{3},\ 0)$,$\mathrm{Q}(\cos \theta,\ 1-\sin \theta)$がある.次の問いに答えよ.

(1)$|\overrightarrow{\mathrm{PQ}}|^2$を$\theta$で表せ.

(2)$\displaystyle \frac{7\pi}{12}=\frac{\pi}{3}+\frac{\pi}{4}$を用いて,$\displaystyle \sin \frac{7\pi}{12}$の値を求めよ.

(3)$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \pi$における$|\overrightarrow{\mathrm{PQ}}|^2$の最大値と最小値を求めよ.また,最大値,最小値を与える$\theta$の値を求めよ.
金沢大学 国立 金沢大学 2013年 第2問
座標平面上の点$\mathrm{P}$は,硬貨を$1$回投げて表が出れば$x$軸の正の方向に$2$,裏が出れば$y$軸の正の方向に$1$だけ進むことにする.最初,$\mathrm{P}$は原点にある.硬貨を$5$回投げた後の$\mathrm{P}$の到達点について,次の問いに答えよ.

(1)$\mathrm{P}$の到達点が$(10,\ 0)$となる確率を求めよ.また,$(6,\ 2)$となる確率を求めよ.
(2)$2$点$(10,\ 0)$,$(6,\ 2)$を通る直線$\ell$の方程式を求めよ.また,$\mathrm{P}$の到達点はすべて直線$\ell$上にあることを示せ.
(3)$(2)$で求めた直線$\ell$と原点との距離を求めよ.
(4)$\mathrm{P}$の到達点と原点との距離$d$が,$2 \sqrt{5}<d \leqq 5$となる確率を求めよ.
金沢大学 国立 金沢大学 2013年 第3問
実数$x$に対して,関数$f(x)$を
\[ f(x)=|x^2-6x+5|-x^2+4x+5 \]
とおく.次の問いに答えよ.

(1)$y=f(x)$のグラフをかけ.
(2)$0 \leqq x \leqq 6$において,$f(x)$は$x=a$で最大値$f(a)$を,$x=b$で最小値$f(b)$をとる.$a,\ b$および$f(a),\ f(b)$を求めよ.
(3)$(2)$で求めた$a,\ b$について,定積分$\displaystyle \int_a^b f(x) \, dx$を求めよ.
名古屋大学 国立 名古屋大学 2013年 第4問
半径1の円盤$C_1$が半径2の円盤$C_2$に貼り付けられており,2つの円盤の中心は一致する.$C_2$の周上にある定点を$\mathrm{A}$とする.図のように,時刻$t=0$において$C_1$は$\mathrm{O}(0,\ 0)$で$x$軸に接し,$\mathrm{A}$は座標$(0,\ -1)$の位置にある.2つの円盤は一体となり,$C_1$は$x$軸上をすべることなく転がっていく.時刻$t$で$C_1$の中心が点$(t,\ 1)$にあるように転がるとき,$0 \leqq t \leqq 2\pi$において$\mathrm{A}$が描く曲線を$C$とする.

(1)時刻$t$における$\mathrm{A}$の座標を$(x(t),\ y(t))$で表す.$(x(t),\ y(t))$を求めよ.
(2)$x(t)$と$y(t)$の$t$に関する増減を調べ,$x(t)$あるいは$y(t)$が最大値または最小値をとるときの$\mathrm{A}$の座標を全て求めよ.
(3)$C$と$x$軸で囲まれた図形の面積を求めよ.
(図は省略)
新潟大学 国立 新潟大学 2013年 第1問
正の実数$a,\ b$に対して,次の連立不等式の表す領域を$D$とする.
\[ \left\{
\begin{array}{l}
ax+y \leqq 6 \\
0 \leqq x \leqq b \\
0 \leqq y
\end{array}
\right. \]
次の問いに答えよ.

(1)$\displaystyle a=\frac{3}{2},\ b=3$であるとする.点$\mathrm{P}(x,\ y)$が領域$D$内を動くとき,$5x+2y$の最大値と,そのときの$x,\ y$の値を求めよ.
(2)$a=1,\ b=9$であるとする.点$\mathrm{P}(x,\ y)$が領域$D$内を動くとき,$2x+y$の最大値と,そのときの$x,\ y$の値を求めよ.
(3)$ab=9$であり,点$\mathrm{P}(x,\ y)$が領域$D$内を動くときの$2x+y$の最大値が$16$であるとする.このとき,$a,\ b$の値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。