タグ「不等号」の検索結果

208ページ目:全4604問中2071問~2080問を表示)
東北大学 国立 東北大学 2013年 第4問
$t$は$0 \leqq t \leqq 1$を満たす実数とする.放物線$y=x^2$,直線$x=1$,および$x$軸とで囲まれた図形を$A$,放物線$y=4(x-t)^2$と直線$y=1$とで囲まれた図形を$B$とする.$A$と$B$の共通部分の面積を$S(t)$とする.

(1)$S(t)$を求めよ.
(2)$0 \leqq t \leqq 1$における$S(t)$の最大値を求めよ.
一橋大学 国立 一橋大学 2013年 第3問
原点を$\mathrm{O}$とする$xy$平面上に,放物線$C:y=1-x^2$がある.$C$上に$2$点$\mathrm{P}(p,\ 1-p^2)$,$\mathrm{Q}(q,\ 1-q^2)$を$p<q$となるようにとる.

(1)$2$つの線分$\mathrm{OP}$,$\mathrm{OQ}$と放物線$C$で囲まれた部分の面積$S$を,$p$と$q$の式で表せ.
(2)$q=p+1$であるとき$S$の最小値を求めよ.
(3)$pq=-1$であるとき$S$の最小値を求めよ.
北海道大学 国立 北海道大学 2013年 第1問
$a$と$b$を正の実数とする.$\displaystyle y=a \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$のグラフを$C_1$,$\displaystyle y=b \sin x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$のグラフを$C_2$とし,$C_1$と$C_2$の交点を$\mathrm{P}$とする.

(1)$\mathrm{P}$の$x$座標を$t$とする.このとき,$\sin t$および$\cos t$を$a$と$b$で表せ.
(2)$C_1,\ C_2$と$y$軸で囲まれた領域の面積$S$を$a$と$b$で表せ.
(3)$C_1,\ C_2$と直線$\displaystyle x=\frac{\pi}{2}$で囲まれた領域の面積を$T$とする.このとき,$T=2S$となるための条件を$a$と$b$で表せ.
北海道大学 国立 北海道大学 2013年 第3問
実数$x,\ y,\ s,\ t$に対し,$z=x+yi,\ w=s+ti$とおいたとき,
\[ z=\frac{w-1}{w+1} \]
をみたすとする.ただし,$i$は虚数単位である.

(1)$w$を$z$で表し,$s,\ t$を$x,\ y$で表せ.
(2)$0 \leqq s \leqq 1$かつ$0 \leqq t \leqq 1$となるような$(x,\ y)$の範囲$D$を座標平面上に図示せよ.
(3)点$\mathrm{P}(x,\ y)$が$D$を動いたとき,$-5x+y$の最小値を求めよ.
北海道大学 国立 北海道大学 2013年 第1問
$f(x)=\sqrt{2}\sin x \cos x+\sin x+\cos x \ (0 \leqq x \leqq 2\pi)$とする.

(1)$t=\sin x+\cos x$とおき,$f(x)$を$t$の関数で表せ.
(2)$t$の取り得る値の範囲を求めよ.
(3)$f(x)$の最大値と最小値,およびそのときの$x$の値を求めよ.
北海道大学 国立 北海道大学 2013年 第5問
区間$-\infty<x<\infty$で定義された連続関数$f(x)$に対して
\[ F(x)=\int_0^{2x}tf(2x-t) \,dt \]
とおく.

(1)$\displaystyle F \left( \frac{x}{2} \right)=\int_0^x (x-s)f(s) \,ds$となることを示せ.
(2)$2$次導関数$F^{\prime\prime}$を$f$で表せ.
(3)$F$が$3$次多項式で$F(1)=f(1)=1$となるとき,$f$と$F$を求めよ.
北海道大学 国立 北海道大学 2013年 第4問
実数$t$が$0 \leqq t<8$をみたすとき,点$\mathrm{P}(t,\ t^3-8t^2+15t-56)$を考える.

(1)点$\mathrm{P}$から放物線$y=x^2$に$2$本の異なる接線が引けることを示せ.
(2)$(1)$での$2$本の接線の接点を$\mathrm{Q}$および$\mathrm{R}$とする.線分$\mathrm{PQ}$,$\mathrm{PR}$と放物線$y=x^2$で囲まれた領域の面積$S(t)$を$t$を用いて表せ.
埼玉大学 国立 埼玉大学 2013年 第4問
$xyz$空間における平面$y=0$上のグラフ$z=2-x^2,\ (0 \leqq x \leqq \sqrt{2})$を$z$軸の周りに回転して得られるものを平面$x=a$で切りとる.ただし$0 \leqq a \leqq \sqrt{2}$とする.そのとき切り口の平面に曲線$G$が現れた.$G$上の点$(x,\ y,\ z)$は,
\[ x=a,\quad z=2-a^2-y^2 \quad (-\sqrt{2-a^2} \leqq y \leqq \sqrt{2-a^2}) \]
をみたす.切り口の平面$x=a$上において点$(a,\ 0,\ 0)$と曲線$G$上の点の距離の最大値を$r(a)$とする.このとき下記の設問に答えよ.

(1)$0 \leqq a \leqq \sqrt{2}$に対して$r(a)$を求めよ.
(2)次の積分値を求めよ.
\[ \pi \int_1^{\sqrt{2}}(r(x))^2 \,dx \]
埼玉大学 国立 埼玉大学 2013年 第3問
次の問いに答えよ.

(1)$f(x)$を区間$0 \leqq x \leqq 1$で定義された連続関数とする.次の等式が成り立つことを示せ.
\[ \int_0^\pi xf(\sin x) \, dx=\frac{\pi}{2}\int_0^\pi f(\sin x) \, dx \]
(2)$a>1$とする.(1)を用いて,積分
\[ \int_0^\pi \frac{x(a^2-4 \cos^2 x)\sin x}{a^2-\cos^2 x} \, dx \]
を求めよ.
名古屋大学 国立 名古屋大学 2013年 第2問
平面上に同じ点$\mathrm{O}$を中心とする半径$1$の円$C_1$と半径$2$の円$C_2$があり,$C_1$の周上に定点$\mathrm{A}$がある.点$\mathrm{P}$,$\mathrm{Q}$はそれぞれ$C_1$,$C_2$の周上を反時計回りに動き,ともに時間$t$の間に弧長$t$だけ進む.時刻$t=0$において,$\mathrm{P}$は$\mathrm{A}$の位置にあって$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$はこの順に同一直線上に並んでいる.$0 \leqq t \leqq 4\pi$のとき$\triangle \mathrm{APQ}$の面積の$2$乗の最大値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。