タグ「不等号」の検索結果

207ページ目:全4604問中2061問~2070問を表示)
尾道市立大学 公立 尾道市立大学 2014年 第3問
$a$を正の定数とする.関数$f(x)=(x-2)^3-3(x-2)+2$の$0 \leqq x \leqq a$における最大値を$M$とする.このとき次の問いに答えなさい.

(1)$f^\prime(x)=0$となる$x$の値,およびそのときの$f(x)$の値を求めなさい.
(2)関数$y=f(x)$のグラフを描きなさい.
(3)$M$を$a$を用いて表わしなさい.
京都大学 国立 京都大学 2013年 第2問
$N$を$2$以上の自然数とし,$a_n \ (n=1,\ 2,\ \cdots)$を次の性質$(ⅰ),\ (ⅱ)$をみたす数列とする.

(i) $a_1=2^N-3$
(ii) $n=1,\ 2,\ \cdots$に対して,

$a_n$が偶数のとき$\displaystyle a_{n+1}=\frac{a_n}{2}$,$a_n$が奇数のとき$\displaystyle a_{n+1}=\frac{a_n-1}{2}$.

このときどのような自然数$M$に対しても
\[ \sum_{n=1}^M a_n \leqq 2^{N+1}-N-5 \]
が成り立つことを示せ.
京都大学 国立 京都大学 2013年 第4問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$における$\displaystyle \cos x+\frac{\sqrt{3}}{4}x^2$の最大値を求めよ.ただし$\pi>3.1$および$\sqrt{3}>1.7$が成り立つことは証明なしに用いてよい.
横浜国立大学 国立 横浜国立大学 2013年 第5問
関数$f(x)=e^{ax} \ (a>0)$と次の条件(ア),(イ)を満たす関数$g(x)$がある.

\mon[(ア)] $y=g(x)$のグラフは半円
\[ \left\{
\begin{array}{l}
(x-p)^2+(y-q)^2=r^2 \\
y<q
\end{array}
\right. \]
である.ただし,$p<0,\ q>0,\ r>|p|$とする.
\mon[(イ)] $f(0)=g(0),\ f^\prime(0)=g^\prime(0),\ f^{\prime\prime}(0)=g^{\prime\prime}(0)$

次の問いに答えよ.

(1)$p,\ q,\ r$を$a$を用いて表せ.
(2)$a$がすべての正の実数を動くとき,$r$を最小にする$a$の値を求めよ.
東北大学 国立 東北大学 2013年 第4問
数列$\{a_n\},\ \{b_n\}$を
\[ a_n=\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}}e^{n \sin \theta} \, d\theta,\quad b_n=\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}}e^{n \sin \theta}\cos \theta \, d\theta \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.ただし,$e$は自然対数の底とする.

(1)一般項$b_n$を求めよ.
(2)すべての$n$について,$\displaystyle b_n \leqq a_n \leqq \frac{2}{\sqrt{3}}b_n$が成り立つことを示せ.
(3)$\displaystyle \lim_{n \to \infty}\frac{1}{n} \log (na_n)$を求めよ.ただし,対数は自然対数とする.
埼玉大学 国立 埼玉大学 2013年 第3問
辺の長さが$\mathrm{AB}=1$,$\mathrm{BC}=k \ (0<k<1)$の長方形$\mathrm{ABCD}$を考える.辺$\mathrm{CD}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$で三角形$\mathrm{ADM}$を折り返したとき頂点$\mathrm{D}$が重なる点を$\mathrm{E}$とする.ただし,点$\mathrm{E}$は長方形の外にはみ出る場合もある.このとき下記の設問に答えよ.

(1)$\angle \mathrm{AMD}=\alpha$とするとき,$\sin \alpha$および$\cos \alpha$をそれぞれ$k$を用いて表せ.
(2)点$\mathrm{E}$を通り,辺$\mathrm{CD}$に垂直な直線と辺$\mathrm{CD}$の交点を$\mathrm{F}$とする.このとき辺$\mathrm{CF}$の長さを$k$を用いて表せ.
(3)点$\mathrm{E}$を通り,辺$\mathrm{AM}$に垂直な直線と辺$\mathrm{AM}$の交点を$\mathrm{G}$とする.三角形$\mathrm{BCE}$の面積が三角形$\mathrm{AEG}$の面積のちょうど2倍になるときの$k$の値を求めよ.
埼玉大学 国立 埼玉大学 2013年 第3問
関数$f(x)=xe^{-x}$について,実数$a,\ b$は次の条件を満たすものとする.

$(\mathrm{A})$ $\displaystyle \int_0^1 f(x) \, dx=f(a) \quad (0<a<1),$
$(\mathrm{B})$ $f(1)-f(0)=f^\prime(b) \quad (0<b<1)$

また,点$(0,\ 0)$,$(a,\ e^a)$を通る直線を$\ell_1$とし,点$(1,\ 0)$,$(b,\ e^b)$を通る直線を$\ell_2$とする.

(1)$(\mathrm{A})$,$(\mathrm{B})$を利用して,$\ell_1,\ \ell_2$の方程式を$a,\ b$を用いずに表せ.
(2)$\ell_1$と$\ell_2$の交点を求めよ.さらに,曲線$y=e^x$上の点$(1,\ e)$における接線と直線$\ell_2$の交点を求めよ.
(3)次の不等式が成り立つことを示せ.
\[ a<\frac{e-2}{e-1}<b<\frac{1}{2} \]
ただし,必要ならば$e=2.718 \cdots,\ \log(e-1)=0.541 \cdots$を用いてよい.
横浜国立大学 国立 横浜国立大学 2013年 第3問
$\displaystyle 0<\theta<\frac{\pi}{3}$を満たす$\theta$に対し,$xy$平面の第1象限の点$\mathrm{P}$および$x$軸の正の部分にある点$\mathrm{Q}$を
\[ \angle \mathrm{QOP}=\theta,\quad \angle \mathrm{PQO}=2\theta,\quad \mathrm{PQ}=1 \]
を満たすようにとる.$\mathrm{PQ}$の中点を$\mathrm{R}$とする.$\theta$が$\displaystyle 0<\theta<\frac{\pi}{3}$の範囲を動くとき,$\mathrm{P}$の軌跡を$C_1$,$\mathrm{R}$の軌跡を$C_2$とする.次の問いに答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標を$\theta$を用いて表せ.
(2)$C_1,\ C_2$を求め,それらを図示せよ.
(3)$C_1,\ C_2$および$x$軸で囲まれる部分を$x$軸のまわりに1回転してできる回転体の体積を求めよ.
東北大学 国立 東北大学 2013年 第6問
半径1の円を底面とする高さ$\displaystyle \frac{1}{\sqrt{2}}$の直円柱がある.底面の円の中心を$\mathrm{O}$とし,直径を1つ取り$\mathrm{AB}$とおく.$\mathrm{AB}$を含み底面と$45^\circ$の角度をなす平面でこの直円柱を2つの部分に分けるとき,体積の小さい方の部分を$V$とする.

(1)直径$\mathrm{AB}$と直交し,$\mathrm{O}$との距離が$t \ (0 \leqq t \leqq 1)$であるような平面で$V$を切ったときの断面積$S(t)$を求めよ.
(2)$V$の体積を求めよ.
東北大学 国立 東北大学 2013年 第1問
$a$を実数とする.以下の問いに答えよ.

(1)$2$次方程式$x^2-2(a+1)x+3a=0$が,$-1 \leqq x \leqq 3$の範囲に$2$つの異なる実数解をもつような$a$の値の範囲を求めよ.
(2)$a$が(1)で求めた範囲を動くとき,放物線$y=x^2-2(a+1)x+3a$の頂点の$y$座標が取りうる値の範囲を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。