タグ「不等号」の検索結果

204ページ目:全4604問中2031問~2040問を表示)
横浜市立大学 公立 横浜市立大学 2014年 第2問
ある開区間$D$で与えられた関数$f(x)$は,$2$階微分可能で,第$2$次導関数$f^{\prime\prime}(x)$は連続で,更に$f^{\prime\prime}(x)<0$と仮定する.以下の問いに答えよ.

(1)$a_1<a_2<a_3$を満たす$D$の$a_1,\ a_2,\ a_3$に対して
\[ \frac{f(a_2)-f(a_1)}{a_2-a_1}>\frac{f(a_3)-f(a_2)}{a_3-a_2} \]
を示せ.
(2)$x_1,\ x_2$を$D$の実数とする.$0 \leqq \alpha \leqq 1$を満たす$\alpha$に対して
\[ f(\alpha x_1+(1-\alpha)x_2) \geqq \alpha f(x_1)+(1-\alpha) f(x_2) \]
を示せ.
(3)$x_1,\ x_2,\ x_3$を$D$の実数とする.$\alpha_1,\ \alpha_2,\ \alpha_3 \geqq 0$及び$\alpha_1+\alpha_2+\alpha_3=1$を満たす$\alpha_1$,$\alpha_2$,$\alpha_3$に対して
\[ f(\alpha_1 x_1+\alpha_2 x_2+\alpha_3 x_3) \geqq \alpha_1 f(x_1)+\alpha_2 f(x_2)+\alpha_3 f(x_3) \]
を示せ.
(4)$D=(0,\ \infty)$とする.上の議論を用いて,$D$の$x_1,\ x_2,\ x_3$に対して不等式
\[ \frac{x_1+x_2+x_3}{3} \geqq \sqrt[3]{x_1x_2x_3} \]
を示せ.
横浜市立大学 公立 横浜市立大学 2014年 第2問
次の問いに答えよ.

(1)次の各問いに答えよ.

\mon[(ア)] $\displaystyle \frac{8}{9}<\frac{q}{p}<\frac{9}{10}$をみたす自然数$p,\ q$における$p$の最小値を記せ.

\mon[(イ)] $\displaystyle \frac{2013}{2014}<\frac{q}{p}<\frac{2014}{2015}$をみたす自然数$p,\ q$における$p$の最小値を記せ.

(2)自然数$a,\ b,\ c,\ d$が$ad-bc=1$をみたすとき,次の各問いに答えよ.

\mon[(ア)] 自然数$p,\ q$が$dq-cp>0$,$ap-bq>0$をみたすとき,$p$の最小値および$p$が最小となるような$q$の値をそれぞれ$a,\ b,\ c,\ d$を用いて表せ.
\mon[(イ)] $\displaystyle \frac{c}{d}<\frac{q}{p}<\frac{a}{b}$をみたす自然数$p,\ q$で$p$が最小となるような分数$\displaystyle \frac{q}{p}$を考えることにより,$a+c$,$b+d$が互いに素であることを示せ.
\mon[(ウ)] $A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right),\ a+d=10$のとき,$(A+A^{-1})^3$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第3問
円周上に等間隔に$n$個($n \geqq 4$)の点が配置されている.これらの点から異なる$3$点を無作為に選び出し,それらを頂点とする三角形をつくる.次の問いに答えよ.

(1)$n=8$のとき,三角形が直角三角形になる確率を求めよ.
(2)$n$が偶数であるとき,三角形が直角三角形になる確率を$n$の式で表せ.
(3)$n=12$のとき,三角形が鈍角三角形になる確率を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第3問
円周上に等間隔に$n$個($n \geqq 4$)の点が配置されている.これらの点から異なる$3$点を無作為に選び出し,それらを頂点とする三角形をつくる.次の問いに答えよ.

(1)$n=8$のとき,三角形が直角三角形になる確率を求めよ.
(2)$n$が偶数であるとき,三角形が直角三角形になる確率を$n$の式で表せ.
(3)$n=12$のとき,三角形が鈍角三角形になる確率を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第4問
$xy$平面において,曲線$y=nx^2$($n$は自然数,$x \geqq 0$)を$C_n$とし,直線$y=1$を$L$とする.$2$つの曲線$C_n$,$C_{n+1}$および$L$で囲まれた図形の面積を$S_n$とする.次の問いに答えよ.

(1)$S_n$を求めよ.
(2)任意の$n$に対して$S_n>S_{n+1}$が成り立つことを示せ.
(3)$\displaystyle \sum_{k=1}^n S_k>\frac{1}{2}$となる最小の$n$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第1問
$xy$平面上に動点$\mathrm{P}(t,\ 2t)$,$\mathrm{Q}(t-1,\ 1-t)$がある.ただし,$0 \leqq t \leqq 1$とする.次の問いに答えよ.

(1)実数$k$に対して直線$x=k$と直線$\mathrm{PQ}$との交点を求めよ.
(2)閉区間$[-1,\ 1]$内の定数$a$に対し,直線$x=a$と線分$\mathrm{PQ}$との交点の$y$座標のとり得る範囲を$a$で表せ.
(3)$t$が$0$から$1$まで動くとき,線分$\mathrm{PQ}$が動く領域$S$の面積を求めよ.
(4)$S$を$x$軸の周りに$1$回転させた回転体の体積を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第3問
円周上に等間隔に$n$個($n \geqq 4$)の点が配置されている.これらの点から異なる$3$点を無作為に選び出し,それらを頂点とする三角形をつくる.次の問いに答えよ.

(1)$n=8$のとき,三角形が直角三角形になる確率を求めよ.
(2)$n$が偶数であるとき,三角形が直角三角形になる確率を$n$の式で表せ.
(3)$n=12$のとき,三角形が鈍角三角形になる確率を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第4問
$x \geqq 0$で定義される関数$f(x)=xe^{\frac{x}{2}}$について次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$f(x)$の第$1$次導関数を$f^\prime(x)$,第$2$次導関数を$f^{\prime\prime}(x)$とする.$f^\prime(2)$,$f^{\prime\prime}(2)$を求めよ.
(2)$f(x)$の逆関数を$g(x)$,$g(x)$の第$1$次導関数を$g^\prime(x)$,第$2$次導関数を$g^{\prime\prime}(x)$とする.$g^\prime(2e)$,$g^{\prime\prime}(2e)$を求めよ.
北九州市立大学 公立 北九州市立大学 2014年 第2問
以下の問いの空欄$[タ]$~$[ノ]$に適する数値,式を記せ.

(1)$i$を虚数単位として,等式$(2+i)(x-3yi)=1-i$を満たす実数$x$および$y$の値を求めると$x=[タ]$,$y=[チ]$となる.
(2)平面上に$2$点$\mathrm{A}(-1,\ 1)$,$\mathrm{B}(3,\ -1)$と直線$x-2y-2=0$がある.この直線上に点$\mathrm{P}$をとるとき,$\mathrm{AP}+\mathrm{BP}$を最小にする点$\mathrm{P}$の座標は$([ツ],\ [テ])$となる.
(3)$0 \leqq \theta<2\pi$の条件で,関数$y=\cos 2\theta-4 \sin \theta$の最大値と最小値を求めると,$\theta=[ト]$のときに最大値$[ナ]$をとり,$\theta=[ニ]$のときに最小値$[ヌ]$をとる.
(4)不等式$9^x \leqq 6+3^x$の解は$[ネ]$である.
(5)$3$つの数$x-3,\ x+1,\ x+6$がこの順で等比数列となるとき,$x$の値を求めると$x=[ノ]$となる.
北九州市立大学 公立 北九州市立大学 2014年 第3問
$\displaystyle S_n=1-\frac{1}{2}+\frac{1}{3}- \cdots +\frac{(-1)^{n-1}}{n} (n=1,\ 2,\ 3,\ \cdots)$と定義する.以下の問いに答えよ.

(1)$x \neq -1$のとき,$\displaystyle \frac{1}{x+1}=\sum_{k=0}^{n-1} (-x)^k+\frac{(-x)^n}{x+1}$が成立することを証明せよ.
(2)$n=1,\ 2,\ 3,\ \cdots$のとき,不等式$\displaystyle -\frac{1}{n+1} \leqq \int_0^1 \frac{(-x)^n}{x+1} \, dx \leqq \frac{1}{n+1}$が成立することを証明せよ.
(3)$\displaystyle S_n=\sum_{k=0}^{n-1} \int_0^1 (-x)^k \, dx$が成立することを証明せよ.
(4)$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。