タグ「不等号」の検索結果

202ページ目:全4604問中2011問~2020問を表示)
岐阜薬科大学 公立 岐阜薬科大学 2014年 第5問
異なる$n$個の整数$1,\ 2,\ 3,\ \cdots,\ n$の中から$3$個の整数を選び,それらの和を$3$で割った余りが$0,\ 1,\ 2$となる確率をそれぞれ$p_n$,$q_n$,$r_n$とするとき,次の問いに答えよ.

(1)同じ整数を重複して選ぶことを許すとき,$p_9$,$q_9$,$r_9$を求めよ.
(2)同じ整数を重複して選ぶことを許さないとき,

(i) $p_{3k}$,$q_{3k}$,$r_{3k}$を$k$を用いて表せ.ただし,$k \geqq 3$とする.
(ii) $\displaystyle \lim_{k \to \infty} p_{3k}$を求めよ.
愛知県立大学 公立 愛知県立大学 2014年 第3問
以下の問いに答えよ.

(1)定積分$\displaystyle \int_0^\pi \cos mx \cos nx \, dx$を求めよ.ただし,$m,\ n$は自然数とする.
(2)$a$と$b$を$a<b$を満たす実数とし,$f(x)$と$g(x)$を区間$[a,\ b]$で定義された連続な関数とする.また,
\[ \int_a^b \{f(x)\}^2 \, dx \neq 0,\quad \int_a^b \{g(x)\}^2 \, dx \neq 0 \]
であるとする.このとき,任意の実数$t$に対して
\[ \int_a^b \{tf(x)+g(x)\}^2 \, dx \geqq 0 \]
が成り立つことを用いて,次の不等式が成り立つことを示せ.
\[ \left\{ \int_a^b f(x)g(x) \, dx \right\}^2 \leqq \left( \int_a^b \{f(x)\}^2 \, dx \right) \left( \int_a^b \{g(x)\}^2 \, dx \right) \]
また,等号が成り立つ条件は,$k$を定数として$g(x)=kf(x)$と表せるときであることを示せ.
(3)$f(x)$は区間$[-\pi,\ \pi]$で定義された連続な関数で$\displaystyle \int_{-\pi}^\pi \{f(x)\}^2 \, dx=1$を満たす.このとき,
\[ I=\int_{-\pi}^\pi f(x) \cos 2x \, dx \]
を最大とする$f(x)$とそのときの$I$の値を求めよ.
釧路公立大学 公立 釧路公立大学 2014年 第2問
以下の各問に答えよ.

(1)$x$の$2$次方程式$x^2+ax+a+8=0$が異なる$2$つの実数解をもち,共に$1$より大きくなるような$a$の範囲を求めよ.
(2)${0}^{\circ} \leqq \theta \leqq {180}^{\circ}$のとき,関数$y=\sin^4 \theta-2 \sin^2 \theta+\cos^4 \theta$の最大値と最小値,およびそのときの$\theta$の値を求めよ.
釧路公立大学 公立 釧路公立大学 2014年 第3問
$n,\ m$を整数とする.このとき,以下の各問に答えよ.

(1)$n^2$を$5$で割った余りは$0,\ 1$または$4$であることを証明せよ.
(2)$n$を$5$で割った余りが$4$のとき,$n^2+n$は$5$の倍数であることを証明せよ.
(3)$m>1$のとき,$m^3-m$が$6$の倍数であることを証明せよ.
福島県立医科大学 公立 福島県立医科大学 2014年 第3問
$a$を定数とする.関数$\displaystyle f(x)=\frac{1-a \cos x}{1+\sin x} (0 \leqq x \leqq \pi)$について,以下の問いに答えよ.

(1)$\displaystyle t=\frac{-\cos x}{1+\sin x} (0<x<\pi)$とおくとき,$\displaystyle \frac{dx}{dt}$を$t$で表せ.
(2)$f(x)$が$0<x<\pi$の範囲で極値をもつように$a$の値の範囲を定めよ.また,その極値を$a$で表せ.
(3)$a$が$(2)$で定めた範囲にあるとき,$2$点$(0,\ f(0))$,$(\pi,\ f(\pi))$を通る直線と$y=f(x)$のグラフで囲まれる図形を$x$軸の周りに回転してできる回転体の体積を$a$で表せ.
富山県立大学 公立 富山県立大学 2014年 第1問
$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を頂点とする正四面体$\mathrm{OABC}$がある.辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{AB}$,$\mathrm{BC}$の中点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$として,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{PQ}}$,$\overrightarrow{\mathrm{QR}}$,$\overrightarrow{\mathrm{RS}}$をそれぞれ$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OB}}$と$\overrightarrow{\mathrm{RS}}$が垂直であることを示せ.
(3)$\overrightarrow{\mathrm{OC}}$と$\overrightarrow{\mathrm{RS}}$のなす角$\theta (0 \leqq \theta \leqq \pi)$を求めよ.
富山県立大学 公立 富山県立大学 2014年 第3問
$a,\ b$は定数とする.関数$f(x)=e^{-x} \sin x$,$g(x)=e^{-x} (a \cos x+b \sin x)$について,次の問いに答えよ.

(1)すべての$x$に対して$\displaystyle \frac{d}{dx}g(x)=f(x)$となるように$a,\ b$の値を定めよ.
(2)$(2k-1) \pi \leqq x \leqq 2k \pi (k=1,\ 2,\ 3,\ \cdots)$の範囲で,曲線$y=f(x)$と$x$軸で囲まれた図形の面積$S_k$を$k$の式で表せ.
(3)極限$\displaystyle \lim_{n \to \infty} \sum_{k=1}^n S_k$を求めよ.
富山県立大学 公立 富山県立大学 2014年 第4問
$\alpha$は実数とする.行列$A=\left( \begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array} \right)$,$B=\left( \begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array} \right)$について,次の問いに答えよ.

(1)$A=r \left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$と表すとき,$r,\ \theta$の値を求めよ.ただし,$r>0$,$0<\theta<\pi$とする.
(2)$B^n=\left( \begin{array}{cc}
\cos n\alpha & -\sin n\alpha \\
\sin n\alpha & \cos n\alpha
\end{array} \right) (n=1,\ 2,\ 3,\ \cdots)$となることを数学的帰納法を用いて示せ.
(3)$A_n=r_n \left( \begin{array}{cc}
\cos \theta_n & -\sin \theta_n \\
\sin \theta_n & \cos \theta_n
\end{array} \right) (n=1,\ 2,\ 3,\ \cdots)$を$(A_n)^n=A$により定める.ただし,$r_n>0$,$\displaystyle 0<\theta_n<\frac{\pi}{n}$とする.このとき,$r_n$,$\theta_n$を$n$の式で表せ.
(4)$(3)$で定めた$A_n$を用いて行列$T_n$を$T_n=nA_n$により定める.点$\mathrm{O}$を原点とする座標平面上において,$T_n$の表す$1$次変換によって点$(1,\ 0)$が移される点を$\mathrm{P}_n$とするとき,$\triangle \mathrm{OP}_n \mathrm{P}_{n+1}$の面積$S_n$を$n$の式で表せ.また,極限$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
広島市立大学 公立 広島市立大学 2014年 第1問
次の問いに答えよ.

(1)次の関数の導関数を求めよ.

(i) $\displaystyle y=\frac{x}{1+x+x^2}$

(ii) $y=(x^2+2x)e^{-x}$

(2)次の不定積分を求めよ.

(i) $\displaystyle \int x^2 \log x \, dx$

(ii) $\displaystyle \int \frac{\cos x}{\cos^2 x+2 \sin x-2} \, dx$

(3)$x>0$とする.無限等比級数
\[ 1+\log x+(\log x)^2+\cdots +(\log x)^n+\cdots \]
が収束するような$x$の値の範囲を求めよ.
広島市立大学 公立 広島市立大学 2014年 第4問
関数$f(x)=4 \sin x+(\pi-2x) \cos x (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)$f^\prime(x)$,$f^{\prime\prime}(x)$を求めよ.
(2)$f^\prime(x)$は$0 \leqq x \leqq \pi$で減少することを示せ.
(3)$f(x)$の増減および曲線$y=f(x)$の凹凸を調べよ.
(4)曲線$y=f(x)$,$x$軸,$y$軸および直線$x=\pi$で囲まれた部分の面積を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。