タグ「不等号」の検索結果

200ページ目:全4604問中1991問~2000問を表示)
九州歯科大学 公立 九州歯科大学 2014年 第1問
次の問いに答えよ.

(1)$\displaystyle 3-\sqrt{5}+\frac{m}{3-\sqrt{5}}=n$をみたす整数$m$と$n$の値を求めよ.
(2)$\displaystyle F(x)=\sum_{k=1}^{12} \{ \log (e^{2k}x^2+e^{-2k})-\log (e^{-2k}x^2+e^{2k}) \}$とおくとき,$\displaystyle \alpha=\lim_{x \to \infty} F(x)$と$\displaystyle \beta=\lim_{x \to 0} F(x)$の値を求めよ.ただし,$e$は自然対数の底である.
(3)$2$つの関数$f(x)$と$g(x)$が$f(0)=-6$,$g(0)=2$,$g(x)>0$,$g^\prime(x)=f^\prime(x)+4x+3$,$\displaystyle f^\prime(x)=\frac{f(x)g^\prime(x)}{g(x)}-2xg(x)$をみたすとき,$\displaystyle g(x)=\frac{ax}{x^2+4}+b$となる定数$a$と$b$を求めよ.ただし,$f^\prime(x)$と$g^\prime(x)$はそれぞれ$f(x)$と$g(x)$の導関数である.
九州歯科大学 公立 九州歯科大学 2014年 第3問
さいころを$2$回続けて投げる.出た目の数の積を$A$とし,$B=\sqrt{A}$とおく.このとき,次の問いに答えよ.

(1)$A$が奇数となる確率$p$と$B$が整数となる確率$q$を求めよ.
(2)$\displaystyle f(x)=\sqrt{2} \sin \left( x+\frac{\pi}{4} \right)+(\sqrt{3}-1) \cos x$とおくとき,$f(x)=C \sin x+D \cos x$となる定数$C$と$D$を求めよ.また,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$における$f(x)$の最大値$M$と最小値$m$の値を求めよ.
(3)$\displaystyle g(x)=\sqrt{2} \sin \left( x+\frac{5 \pi}{4} \right)+(1-\sqrt{3}) \cos x$を$f(x)$を用いて表せ.また,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$における$g(x)$の最大値$N$と最小値$n$の値を求めよ.
(4)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$に対して$\displaystyle T(x)=\sqrt{2} \sin \left( x+A \pi+\frac{\pi}{4} \right)+(-1)^A (\sqrt{3}-1) \cos x$とおく.$T(x)>0$となる確率$r$を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2014年 第2問
実数$x$に対して,$x$以下で最大の整数を$x$の整数部分といい,$[x]$で表す.自然数$n$に対して,数列$\{a_n\}$を$a_n=[n\pi]$と定め,また数列$\{b_n\}$を,$b_1=b_2=b_3=0$,$n \geqq 4$のときは
\[ a_k<n \leqq a_{k+1} \quad \text{となる} n \text{に対して,} \quad b_n=k \]
と定める.ただし,$\pi$は円周率を表す.

(1)$b_4,\ b_5,\ b_7,\ b_{10}$を求めよ.
(2)自然数$p,\ q$に対して,$a_p<q$ならば$p\pi<q$であることを示せ.
(3)数列$\{b_n\}$の一般項を$n$の式で表せ.このとき,必要なら上記の整数部分を表す記号を用いてよい.
和歌山県立医科大学 公立 和歌山県立医科大学 2014年 第4問
曲線$y=x^2 (x>0)$を$C_1$とする.この$C_1$と$x$軸の両方に接し,半径が$\displaystyle \frac{1}{2}$の円を$C_2$とする.次の問いに答えよ.

(1)$C_2$の方程式を求めよ.
(2)$C_2$の外部において,$C_1$と$C_2$と$x$軸で囲まれた部分の面積$S$を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2014年 第4問
$f(x)=|x^2-3x+2|$とする.曲線$y=f(x)$を$C$とし,曲線$C$上の点$\mathrm{A}(a,\ f(a))$における接線を$\ell$とする.ただし,$1<a<2$とする.以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$の共有点のうち,接点$\mathrm{A}$とは異なる$2$つの点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$で表せ.
(3)曲線$C$と接線$\ell$で囲まれた部分の面積を$S$とするとき,$S$のとりうる値の範囲を求めよ.
札幌医科大学 公立 札幌医科大学 2014年 第3問
$a$を$0<a<1$とする.座標空間の$4$点を$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\displaystyle \mathrm{B} \left( 0,\ \frac{1}{a},\ 0 \right)$,$\displaystyle \mathrm{C} \left( 0,\ 0,\ \frac{1}{1-a} \right)$とする.また,$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を頂点とする四面体に内接する球を$S$とする.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面に直交し長さが$1$のベクトルを$a$を用いて表せ.
(2)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と球$S$の接点の座標を$a$を用いて表せ.
(3)球$S$の半径を$a$を用いて表せ.
(4)球$S$の体積の最大値を求めよ.
岩手県立大学 公立 岩手県立大学 2014年 第1問
以下の問いに答えなさい.

$y=2(x-1)(x^2-2x-2)$で与えられる平面上の曲線$C$を考える.

(1)曲線$C$と$x$軸との交点の座標をすべて答えなさい.
(2)$x=a$で曲線$C$と接する接線の方程式を$a$を用いて答えなさい.
(3)$x=a$で曲線$C$と接する接線と$y$軸との交点の$y$座標を$b$とする.$\displaystyle -\frac{1}{4} \leqq a \leqq 3$における$b$の最小値と最大値を答えなさい.また,$b$の値が最小,最大となるときの$a$の値をそれぞれ答えなさい.
公立はこだて未来大学 公立 公立はこだて未来大学 2014年 第5問
空間の点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$に対して,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.以下の問いに答えよ.

(1)$|\overrightarrow{\mathrm{OA}}|=1$,$|\overrightarrow{\mathrm{OB}}|=\cos \theta$であるとき,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{AB}}$のなす角を求めよ.さらに,$\triangle \mathrm{OAB}$の面積の最大値を求めよ.また,そのときの$\theta$の値を求めよ.
(2)$|\overrightarrow{\mathrm{OA}}|=1$,$|\overrightarrow{\mathrm{OB}}|=\cos \theta+2 \sin \theta$であるとき,$\triangle \mathrm{OAB}$の面積の最大値を求めよ.ただし,そのときの$\theta$の値は求めなくてよい.
(3)$|\overrightarrow{\mathrm{OA}}|=\cos \theta$,$|\overrightarrow{\mathrm{OB}}|=1-\cos \theta$であるとき,$|\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|^2$の最小値を求めよ.ただし,そのときの$\theta$の値は求めなくてよい.
福島県立医科大学 公立 福島県立医科大学 2014年 第1問
以下の各問いに答えよ.

(1)$a$は実数とする.極限$\displaystyle \lim_{x \to +0} \int_x^2 t^a \, dt$を調べよ.
(2)$\displaystyle \alpha,\ \beta \left( 0<\alpha \leqq \beta<\frac{\pi}{2} \right)$が$\tan \alpha \tan \beta=1$を満たすとき,$\displaystyle \alpha+\beta=\frac{\pi}{2}$であることを示せ.
(3)点$\mathrm{P}(x,\ y)$が楕円$\displaystyle \frac{x^2}{4}+y^2=1$の上を動くとき,$3x^2-16xy-12y^2$の値が最大になる点$\mathrm{P}$の座標を求めよ.
(4)公正なサイコロを$2$回振り,$1$回目に出た目を$a$,$2$回目に出た目を$b$とする.また,公正なコインを$1$回投げ,表が出たら$c=1$,裏が出たら$c=-1$とする.$\mathrm{O}$を原点とする座標平面上の$2$点$\mathrm{A}$,$\mathrm{B}$を$\mathrm{A}(a,\ b)$,$\mathrm{B}(b,\ ca)$と定める.次の問いに答えよ.

(i) $\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が垂直になる確率を求めよ.
(ii) $\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が平行になる確率を求めよ.
(iii) 内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の期待値を求めよ.
\mon[$\tokeishi$] $\triangle \mathrm{OAB}$の面積の期待値を求めよ.ただし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が平行になるときは面積を$0$とする.
滋賀県立大学 公立 滋賀県立大学 2014年 第2問
$a,\ b$は定数で,$a \geqq b$である.

(1)$2$次方程式$x^2-ax+b=0$の$2$つの解が正の整数であるとき,$a,\ b$が満たすべき条件を求めよ.
(2)$2$次方程式$x^2-ax+b=0$および$x^2-bx+a=0$の解がすべて正の整数であるとき,$a,\ b$が満たすべき条件を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。