タグ「不等号」の検索結果

192ページ目:全4604問中1911問~1920問を表示)
上智大学 私立 上智大学 2014年 第1問
次の問いに答えよ.

(1)$3^{2014}$は$[ア]$桁の数であり,最も大きい位の数字は$[イ]$,一の位の数字は$[ウ]$である.ただし,
\[ \log_{10}2=0.3010,\quad \log_{10}3=0.4771,\quad \log_{10}7=0.8451 \]
とする.
(2)連立不等式
\[ \left\{ \begin{array}{l}
y \leqq -2x^2-8x-3 \\
y \geqq |3x+6| \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
で表される座標平面上の領域を$D$とする.

(i) $D$の面積は$\displaystyle \frac{[エ]}{[オ]}$である.
(ii) 点$(x,\ y)$が$D$を動くとする.

\mon[$\mathrm{(a)}$] $4x+y$の最大値は$[カ]$,最小値は$[キ]$である.
\mon[$\mathrm{(b)}$] $x^2+4x+y$の最大値は$[ク]$,最小値は$[ケ]$である.
上智大学 私立 上智大学 2014年 第2問
座標空間の原点$\mathrm{O}$を通りベクトル$(1,\ \sqrt{3},\ 2 \sqrt{3})$に平行な直線を$\ell$とし,点$\mathrm{A}$の座標を$(\sqrt{3}+3,\ 3 \sqrt{3}+3,\ 6-2 \sqrt{3})$とする.このとき,$\mathrm{O}$を頂点とする円錐$C$は,底面の中心$\mathrm{H}$が$\ell$上にあり,底面の円周が$\mathrm{A}$を通るとする.

(1)$\displaystyle \angle \mathrm{AOH}=\frac{[コ]}{[サ]}\pi$である.ただし,$0 \leqq \angle \mathrm{AOH}<\pi$とする.
(2)$\mathrm{H}$の座標は
\[ \left( \sqrt{[シ]},\ [ス],\ [セ] \right) \]
である.
(3)点$(\sqrt{3},\ y,\ z)$が$C$の底面上(境界を含む)にあるとき,常に
\[ y+[ソ]z+[タ]=0 \]
が成り立つ.
(4)点$(\sqrt{3},\ y,\ z)$が$C$の側面上(境界を含む)にあるとき,常に
\[ [チ]y^2+[ツ]yz+[テ]z^2+[ト]y+[ナ]z+21=0 \]
が成り立つ.また,このときの$z$の最大値は
\[ [ニ]+\frac{[ヌ]}{[ネ]} \sqrt{[ノ]} \]
である.
上智大学 私立 上智大学 2014年 第2問
座標平面において,放物線$C:y=-x^2+3x$と直線$\displaystyle \ell:y=\frac{1}{2}x$で囲まれた領域を$S$とする.ただし,$S$は境界線を含むものとする.

(1)$C$と$\ell$の共有点は,原点$\mathrm{O}$と点$\displaystyle \left( \frac{[セ]}{[ソ]},\ \frac{[タ]}{[チ]} \right)$である.
(2)点$\mathrm{P}(-1,\ 3)$を通り傾きが$a$の直線$m$が,領域$S$と共有点をもつとする.このとき,$a$の範囲は
\[ [ツ] \leqq a \leqq [テ]+[ト] \sqrt{[ナ]} \]
である.
(3)$a=[テ]+[ト] \sqrt{[ナ]}$のとき,直線$m$と領域$S$の共有点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[ニ]+\sqrt{[ヌ]}$である.
(4)$\triangle \mathrm{OPQ}$の面積は$[ネ]+[ノ] \sqrt{[ハ]}$である.
(5)線分$\mathrm{OP}$,線分$\mathrm{PQ}$および放物線$C$で囲まれた図形の面積は
\[ \frac{[ヒ]}{[フ]}+\frac{[ヘ]}{[ホ]} \sqrt{[マ]} \]
である.
上智大学 私立 上智大学 2014年 第3問
座標平面上に$3$点
\[ \mathrm{A}(1,\ 0),\quad \mathrm{B}(\cos 2t,\ \sin 2t),\quad \mathrm{C}(\cos (-t),\ \sin (-t)) \]
がある.ただし,$0<t<2\pi$とする.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のうち,少なくとも$2$点が一致するような$t$は全部で$[ミ]$個あり,その中で最大の$t$は$\displaystyle \frac{[ム]}{[メ]}\pi$である.

以下$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標がすべて異なる場合を考える.

(2)$\triangle \mathrm{ABC}$が直角三角形となるような$t$は全部で$[モ]$個あり,その中で最大の$t$は$\displaystyle \frac{[ヤ]}{[ユ]} \pi$である.
(3)$\triangle \mathrm{ABC}$が$\mathrm{AC}=\mathrm{BC}$を満たすような$t$は全部で$[ヨ]$個あり,その中で最大の$t$は$\displaystyle \frac{[ラ]}{[リ]} \pi$である.
(4)$\triangle \mathrm{ABC}$が$\mathrm{AB}=\mathrm{BC}$を満たすような$t$は全部で$[ル]$個あり,その中で最大の$t$は$\displaystyle \frac{[レ]}{[ロ]} \pi$である.
上智大学 私立 上智大学 2014年 第3問
$\displaystyle f(x)=\frac{1}{4}(x^3-3x^2-9x+3)$とする.

(1)関数$f(x)$は,$x=[テ]$で極大値$[ト]$をとり,$x=[ナ]$で極小値$[ニ]$をとる.
(2)$y=f(x)$のグラフと$y$軸との交点における接線の方程式は,$\displaystyle y=\frac{[ヌ]}{[ネ]}x+\frac{[ノ]}{[ハ]}$である.
(3)実数からなる集合
\[ A=\{x \;|\; f(x)>0 \},\quad B=\{x \;|\; x \geqq b\} \]
を考える.ただし,$b$は整数とする.

(i) $A \subset B$となる最大の整数$b$は$[ヒ]$である.
(ii) $B \subset A$となる最小の整数$b$は$[フ]$である.
(iii) $b \in A$であり,$B \subset A$とならない整数$b$は$[ヘ]$個ある.
上智大学 私立 上智大学 2014年 第1問
関数$f(x)$を
\[ f(x)=a \sin 2x-\sin x+\cos x \]
とする.ただし,$a$を負の実数とする.

(1)$t=-\sin x+\cos x$とおくと,$f(x)$は$t$を用いて
\[ [ア]at^2+[イ]t+[ウ]a \]
と表される.
(2)$f(x)$は,$\displaystyle \frac{[エ]}{[オ]} \sqrt{[カ]}<a<0$のとき,


最大値$[キ]a+\sqrt{[ク]}$
最小値$[ケ]a+[コ] \sqrt{[サ]}$


をとり,$\displaystyle a \leqq \frac{[エ]}{[オ]} \sqrt{[カ]}$のとき,


最大値$[シ]a+\sqrt{[ス]}$
最小値$\displaystyle [セ]a+\frac{1}{[ソ]a}$


をとる.
上智大学 私立 上智大学 2014年 第1問
次の$[あ]$~$[お]$に当てはまるものを,下の選択肢から選べ.

(1)$\displaystyle x=-\frac{2}{3}$は$3x^2-13x-10=0$であるための$[あ]$
(2)$n$を自然数とする.$n^2$が$5$の倍数であることは,$n$が$5$の倍数であるための$[い]$
(3)$a,\ b$を自然数とする.$(a+b)^2$が奇数であることは,$ab$が偶数であるための$[う]$
(4)平面上の異なる$2$つの円$C$,$C^\prime$の半径をそれぞれ$r$,$r^\prime$とし,中心間の距離を$d$とする.ただし,$r<r^\prime$とする.このとき,$C$と$C^\prime$が共有点をもたないことは,$d>r+r^\prime$であるための$[え]$
(5)$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\mathrm{CA}=7$の$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$の延長上に$\mathrm{CD}=4$となる点$\mathrm{D}$をとり,辺$\mathrm{AC}$上に$\mathrm{AE}=3$となる点$\mathrm{E}$をとる.このとき,辺$\mathrm{AB}$上の点$\mathrm{F}$に対して,$\mathrm{AF}=3$であることは,$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が一直線上にあるための$[お]$
選択肢:

\mon[$①$] 必要条件であるが十分条件ではない.
\mon[$②$] 十分条件であるが必要条件ではない.
\mon[$③$] 必要十分条件である.
\mon[$④$] 必要条件でも十分条件でもない.
上智大学 私立 上智大学 2014年 第3問
$a$を$-1$でない実数とし,座標平面において,放物線
\[ C:y=(x^2-2x+1)+a(x^2-5x+6) \]
を考える.

(1)$C$は,$a$の値によらず$2$点$\mathrm{P}([ソ],\ [タ])$,$\mathrm{Q}([チ],\ [ツ])$を必ず通る.ただし,$[ソ]<[チ]$とする.
(2)点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{Q}$における$C$の接線を$\ell^\prime$とする.$\ell$と$\ell^\prime$の交点の座標は$\displaystyle \left( \frac{[テ]}{[ト]},\ \frac{[ナ]}{[ニ]}a+[ヌ] \right)$である.

(3)$C$の軸は$\displaystyle x=\frac{1}{2} \left( [ネ]+\frac{[ノ]}{a+[ハ]} \right)$である.

(4)$C$が$x$軸と異なる$2$点で交わるのは

$a<[ヒ]$ \ または \ $[フ]<a$ \quad (ただし$a \neq -1$)

のときである.
(5)$a=[フ]$のとき,$C$は点$\displaystyle \left( \frac{[ヘ]}{[ホ]},\ 0 \right)$で$x$軸と接する.
(6)$C$が$x$軸と$2$点$(\alpha,\ 0)$,$(\beta,\ 0)$(ただし$\alpha<\beta$)で交わるとき,$\displaystyle \beta-\alpha=\frac{2}{3} \sqrt{5}$となるのは,$a=[マ]$または$\displaystyle a=\frac{[ミ]}{[ム]}$のときである.ただし,$\displaystyle [マ]<\frac{[ミ]}{[ム]}$とする.$a=[マ]$のとき,$C$と$x$軸で囲まれた図形の面積は$\displaystyle \frac{[メ]}{[モ]} \sqrt{[ヤ]}$である.
東京理科大学 私立 東京理科大学 2014年 第4問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

次の曲線と直線について考える.ただし,$a,\ b,\ c,\ d$は実数で,$a>0$,$b$は$0$でないとする.

$C:y=ax^2+bx+c$
$\ell_1:y=x$
$\displaystyle \ell_2:y=-\frac{1}{b}x-d$

$C$は,$x$軸と点$\mathrm{P}$で接し,$\ell_1$と点$\mathrm{Q}$で接する.$\ell_2$は点$\mathrm{P}$を通るものとする.また,$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)$\displaystyle b=\frac{[リ]}{[ル]},\ ac=\frac{[レ]}{[ロ][ワ]}$
(2)$2$直線$\ell_1,\ \ell_2$と曲線$C$で囲まれる図形の面積が$2$であるとき,
\[ a=\frac{[ヲ]}{[ン]},\quad d=[あ] \]
である.
(3)このときの点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標はそれぞれ,
\[ \mathrm{P} (-[い],\ 0),\quad \mathrm{Q}([う],\ [う]),\quad \mathrm{R} \left( -\frac{[え]}{[お]},\ -\frac{[え]}{[お]} \right) \]
である.
東京理科大学 私立 東京理科大学 2014年 第1問
放物線$y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2) (0 \leqq a<b)$に対して,$L(a,\ b)$を線分$\mathrm{AB}$の長さとし,$S(a,\ b)$を線分$\mathrm{AB}$と放物線$y=x^2$で囲まれた図形の面積とする.さらに,$T(a,\ b)$を$a \leqq x \leqq b$の範囲で放物線$y=x^2$と$x$軸で囲まれた図形の面積とする.

(1)$(ⅰ)$ $\displaystyle L(0,\ t)=\frac{1}{2}L(0,\ 1)$となるのは,$\displaystyle t^2=\frac{1}{[ア]}(\sqrt{[イ]}-[ウ])$となるときである.
$(ⅱ)$ $L(0,\ t)=L(t,\ 1)$となるのは,$\displaystyle t=\frac{1}{[エ]}(\sqrt{[オ]}-[カ])$のときである.
(2)$(ⅰ)$ $\displaystyle S(0,\ t)=\frac{1}{2}S(0,\ 2)$となるのは,$\displaystyle \log_2 t=\frac{[キ]}{[ク]}$となるときである.

$(ⅱ)$ $T(t,\ 2)=S(0,\ 2)$となるのは,$\displaystyle \log_2 t=\frac{[ケ]}{[コ]}$となるときである.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。