タグ「不等号」の検索結果

184ページ目:全4604問中1831問~1840問を表示)
昭和大学 私立 昭和大学 2014年 第1問
次の各問に答えよ.

(1)$(1$-$1)$ 連立不等式$600<2^{x+2}-2^x<900$を満たす自然数$x$を求めよ.
$(1$-$2)$ 連立不等式$21<\log_2 x^6<22$を満たす自然数$x$を求めよ.
(2)$(2$-$1)$ $0 \leqq x \leqq \pi$のとき,方程式$\sqrt{3} \sin x-\cos x=a$が相異なる$2$つの解をもつような定数$a$の値の範囲を求めよ.
$(2$-$2)$ $2$次方程式$\sqrt{3}x^2+2x-\sqrt{3}=0$の$2$つの解を$\tan \alpha$,$\tan \beta$とするとき,$\alpha+\beta$の値を求めよ.ただし,$0<\alpha+\beta<\pi$とする.
(3)三角形$\mathrm{OAB}$において$\mathrm{OA}=1$,$\mathrm{OB}=2$,$\angle \mathrm{AOB}={120}^\circ$とし,点$\mathrm{O}$から辺$\mathrm{AB}$に下ろした垂線の足を$\mathrm{H}$,辺$\mathrm{OB}$の中点を$\mathrm{M}$,線分$\mathrm{OH}$と線分$\mathrm{AM}$の交点を$\mathrm{C}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおくとき,次の問に答えよ.
$(3$-$1)$ $\mathrm{AH}:\mathrm{HB}$を求めよ.
$(3$-$2)$ $\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
昭和大学 私立 昭和大学 2014年 第2問
平面上に$2$点$\mathrm{A}(-2,\ 0)$,$\mathrm{B}(0,\ 0)$および直線$\ell:x+y=2$がある.直線$\ell$上に点$\mathrm{P}(t,\ -t+2)$をとる.次の各問に答えよ.

(1)$\angle \mathrm{APB}=\theta$とおく.このとき,常に$\displaystyle 0 \leqq \theta<\frac{\pi}{2}$となることがわかっている.
$(1$-$1)$ $t=-2$のとき,$\tan \theta$の値を求めよ.
$(1$-$2)$ $\tan \theta$を$t$を用いて表せ.
(2)$\angle \mathrm{APB}=\theta$を最大にする点$\mathrm{P}$の座標,およびそのときの$\tan \theta$の値を求めよ.
昭和大学 私立 昭和大学 2014年 第1問
次の問いに答えよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
-x+4<9 \\
3x-2<a \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
を満たす整数$x$が存在しないような$a$の値の範囲を求めよ.
(2)$2$次方程式$x^2+2kx+k+12=0$が実数解をもち,それがすべて正となるような定数$k$の値の範囲を求めよ.
(3)$\triangle \mathrm{ABC}$において$a^2=b^2+c^2+bc$のとき,$\angle \mathrm{A}$を求めよ.ただし,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$とする.
(4)$0^\circ \leqq x \leqq {180}^\circ$であるとき,不等式$2 \sin^2 x-5 \cos x+1 \leqq 0$を解け.
昭和大学 私立 昭和大学 2014年 第3問
$a$を定数とし,$2$次関数$y=2x^2-4(a-2)x+2a^2-7a+9$のグラフを$C$とする.以下の各問いに答えよ.

(1)$C$の頂点の座標を求めよ.
(2)$a<2$とする.$x$の範囲を$-1 \leqq x \leqq 1$とするとき,$y$の最大値とそのときの$x$の値を求めよ.
(3)$(2)$と同様に$a<2$,$-1 \leqq x \leqq 1$とするとき,$y$の最小値とそのときの$x$の値を,$a$の値の範囲によって場合分けして答えよ.
(4)$(2)$と同様に$a<2$,$-1 \leqq x \leqq 1$とするとき,最大値と最小値の差が$6$になるときの$a$の値を求めよ.
昭和大学 私立 昭和大学 2014年 第3問
次の各問に答えよ.

(1)$1$から$8$までの数字を$1$つずつ記した$8$個の球が袋の中に入っている.この袋から$1$個の球を取り出し,その数字を読み取ってはもとの袋に戻す操作を$3$回繰り返す.ただし,どの球が選ばれる確率も同じであるとする.いま,読み取った$3$個の数字のうち最大の数と最小の数の差を$R$とする.次の問に答えよ.
$(1$-$1)$ $R=1$となる確率を求めよ.
$(1$-$2)$ $R=4$となる確率を求めよ.
$(1$-$3)$ $R$の期待値を求めよ.
(2)$x$についての$2$次方程式$x^2+(\log_a 5)x+\log_5 a^2=0$が相異なる負の解をもつための定数$a$のとるべき値の範囲を求めよ.
(3)行列$A$を$A=\left( \begin{array}{cc}
a & b \\
-b & a
\end{array} \right)$とし,さらに,$A^2=B$および$B^2=A$を満たす行列$B$が存在するとする.ただし$a,\ b$は実数で,$b>0$とする.次の問に答えよ.
$(3$-$1)$ 行列$A^3$を求めよ.
$(3$-$2)$ $a,\ b$の値を求めよ.
昭和大学 私立 昭和大学 2014年 第1問
次の問いに答えよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
-x+4<9 \\
3x-2<a \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
を満たす整数$x$が存在しないような$a$の値の範囲を求めよ.
(2)$2$次方程式$x^2+2kx+k+12=0$が実数解をもち,それがすべて正となるような定数$k$の値の範囲を求めよ.
(3)$\triangle \mathrm{ABC}$において$a^2=b^2+c^2+bc$のとき,$\angle \mathrm{A}$を求めよ.ただし,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$とする.
(4)$0^\circ \leqq x \leqq {180}^\circ$であるとき,不等式$2 \sin^2 x-5 \cos x+1 \leqq 0$を解け.
昭和大学 私立 昭和大学 2014年 第3問
$a$を定数とし,$2$次関数$y=2x^2-4(a-2)x+2a^2-7a+9$のグラフを$C$とする.以下の各問いに答えよ.

(1)$C$の頂点の座標を求めよ.
(2)$a<2$とする.$x$の範囲を$-1 \leqq x \leqq 1$とするとき,$y$の最大値とそのときの$x$の値を求めよ.
(3)$(2)$と同様に$a<2$,$-1 \leqq x \leqq 1$とするとき,$y$の最小値とそのときの$x$の値を,$a$の値の範囲によって場合分けして答えよ.
(4)$(2)$と同様に$a<2$,$-1 \leqq x \leqq 1$とするとき,最大値と最小値の差が$6$になるときの$a$の値を求めよ.
昭和大学 私立 昭和大学 2014年 第4問
放物線$C:y=x^2$のグラフと直線$\ell:y=-ax$を考える.ただし,$0<a<2$とする.$C$と$\ell$で囲まれた図形の面積を$S_1$とし,$C$と$\ell$と直線$x=-2$のすべてで囲まれた図形の面積を$S_2$とするとき,以下の各問いに答えよ.

(1)$S_1$を$a$の式で表せ.
(2)$S_2$を$a$の式で表せ.
(3)$S=S_1+S_2$の最小値とそのときの$a$の値を求めよ.
大同大学 私立 大同大学 2014年 第4問
$0<a<2$とする.曲線$y=x^4$の点$(a,\ a^4)$における接線を$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)曲線$y=x^4$と$\ell$および$y$軸で囲まれる部分の面積$S(a)$を求めよ.
(3)曲線$y=x^4 (x \geqq a)$と直線$y=a^4$および直線$x=2$で囲まれる部分の面積$T(a)$を求めよ.
(4)$S(a)+T(a)$を最小にする$a$の値を求めよ.
大同大学 私立 大同大学 2014年 第6問
次の$[ノ]$から$[リ]$までの$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.

(1)$1$つのさいころを$3$回続けて投げるとき,出た目が$3$回とも同じである確率は$\displaystyle \frac{[ノ]}{[ハ][ヒ]}$,$3$回とも異なる確率は$\displaystyle \frac{[フ]}{[ヘ]}$であり,$3$回のうち$2$回は同じで$1$回だけ他と異なる確率は$\displaystyle \frac{[ホ]}{[マ][ミ]}$である.
(2)$a,\ b$を自然数とし,$x$を実数とするとき,以下の$[ム]$から$[リ]$の$[ ]$に入る正しい記述を次の$①$~$④$の中から選び,その番号を記述せよ.

\mon[$①$] 必要十分条件である
\mon[$②$] 必要条件であるが十分条件でない
\mon[$③$] 十分条件であるが必要条件でない
\mon[$④$] 必要条件でも十分条件でもない

(i) $a$が$2$の倍数であることは,$a^2$が$2$の倍数であるための$[ム]$
(ii) $a$が$4$の倍数であることは,$a^2$が$4$の倍数であるための$[メ]$
(iii) $a$が$4$の倍数であることは,$a^2$が$8$の倍数であるための$[モ]$
\mon[$\tokeishi$] $a$が$2$の倍数または$b$が$2$の倍数であることは,$ab$が$6$の倍数であるための$[ヤ]$
\mon[$\tokeigo$] $a$が$2$の倍数または$b$が$3$の倍数であることは,$ab$が$6$の倍数であるための$[ユ]$
\mon[$\tokeiroku$] $x^2+x-2=0$は,$x=1$であるための$[ヨ]$
\mon[$\tokeishichi$] $x>2$は,$x^2+3x-4>0$であるための$[ラ]$
\mon[$\tokeihachi$] $x^2 \leqq x+6$は,$x<3$であるための$[リ]$
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。