タグ「不等号」の検索結果

179ページ目:全4604問中1781問~1790問を表示)
藤田保健衛生大学 私立 藤田保健衛生大学 2014年 第2問
三角形$\mathrm{ABC}$において$\displaystyle \angle \mathrm{ABC}=\frac{\pi}{2}$,$\mathrm{AB}=c$,$\mathrm{CA}=b$,$\angle \mathrm{ACB}=\theta$とする.また辺$\mathrm{BC}$の延長上に点$\mathrm{D}$を$\mathrm{CD}=b$となるようにとり,$\angle \mathrm{ADB}=\alpha$とする.

(1)この$b,\ c$に対して$x+y=2b^2$,$xy=b^4-b^2c^2$を満足する$x,\ y$で$x>y$となるものを求めると,$(x,\ y)=[$5$]$である.
(2)線分$\mathrm{AD}$の長さの平方は$[$6$]$である.従って$\sin \alpha$の値を二重根号を用いずに,$b,\ c$で表せば$[$7$]$となり,さらにこれを$\sin \theta$で表せば$[$8$]$となる.
名城大学 私立 名城大学 2014年 第2問
$a,\ b$は定数で$a>0$とする.関数$f(x)=x^2-2ax+a^2+2a+b$について,次の各問に答えよ.

(1)放物線$y=f(x)$の頂点の座標を$a$と$b$を用いて表せ.
(2)$0 \leqq x \leqq 1$における関数$f(x)$の最小値が$0$であるとき,$a$を用いて$b$を表せ.
(3)$0 \leqq x \leqq 1$における関数$f(x)$の最小値が$0$,最大値が$3$であるとき,$a$と$b$の値を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2014年 第3問
現実の気体では圧力を$p>0$,体積を$v>0$,温度を$T>0$とし,$a,\ b,\ R$を正の定数として方程式
\[ \left( p+\frac{a}{v^2} \right) (v-b)=RT \cdots\cdots ① \]
に従う.

(1)$①$から$p$を$v$を用いて表すと$p=[$9$]$となる.
(2)ボイル・シャルルの法則に従えば,$pv=RT \cdots\cdots②$である.$a>bRT$のとき,$①$と$②$を$p$と$v$の連立方程式とみなすと$v=[$10$]$である.
(3)$T=T_c$(正定数)のとき$①$の$p$を$v$の関数とみなして$\displaystyle \frac{dp}{dv}$,$\displaystyle \frac{d^2p}{dv^2}$を求める.
$①$と$\displaystyle \frac{dp}{dv}=0$,$\displaystyle \frac{d^2p}{dv^2}=0$を同時に満たす$T_c$,$v_c$,$p_c$を求めると,$T_c=[$11$]$,$v_c=[$12$]$,$p_c=[$13$]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2014年 第4問
原点$\mathrm{O}$を中心とした半径$1$の円$C$がある.円$C$上の$1$点$\mathrm{A}(a_1,\ a_2)$,$a_i>0$,$i=1,\ 2$を考える.$\mathrm{OA}$が$x$軸となす角度を$\theta$とする.

(1)円$C^\prime$を中心$(b_1,\ b_2)$,$b_i>0$,$i=1,\ 2$,半径$1$の円とし,点$\mathrm{A}$と$(1,\ 0)$で円$C$と交わっているものとすると,$(b_1,\ b_2)=[$14$]$である.また円$C^\prime$の点$\mathrm{A}$における接線の方程式は$[$15$]$である.
(2)次に$\theta$を限りなく$0$に近づけていくとき,
\[ \theta,\ \sin \theta,\ \sqrt{2(1-\cos \theta)},\ 1-\cos \theta+\sin \theta \]
の値の大小関係が定まり,これらを小さい順に並べて,$a<b<c<d$とすると
\[ a=[$16$],\ b=[$17$],\ c=[$18$],\ d=[$19$] \]
であり,$\displaystyle \frac{d-a}{bc}$は$[$20$]$に近づく.
南山大学 私立 南山大学 2014年 第1問
$[ ]$の中に答を入れよ.

(1)行列$A=\left( \begin{array}{cc}
a & 2b \\
-b & a
\end{array} \right)$の表す$1$次変換によって,点$(3,\ 1)$が点$(7,\ -5)$に移され,点$(p,\ q)$が点$(4,\ 1)$に移される.$a$と$b$の値を求めると$(a,\ b)=[ア]$であり,$p$と$q$の値を求めると$(p,\ q)=[イ]$である.
(2)$3$辺の長さがそれぞれ$\displaystyle 1,\ x,\ 2-x \left( \frac{1}{2}<x<\frac{3}{2} \right)$の三角形がある.この三角形の面積$S$を$x$で表すと$S=[ウ]$であり,$\displaystyle S \geqq \frac{\sqrt{2}}{4}$となる$x$の値の範囲を求めると$[エ]$である.
(3)$2$つの数列$\{a_n\}$と$\{b_n\}$は,

$a_n=2n-1 \quad (n=1,\ 2,\ 3,\ \cdots)$
$b_1=2, (n+1)b_{n+1}=a_{n+1}+nb_n \quad (n=1,\ 2,\ 3,\ \cdots)$

を満たす.$\displaystyle \sum_{k=1}^n a_k$を求めると,$\displaystyle \sum_{k=1}^n a_k=[オ]$である.$\{b_n\}$の一般項を求めると,$b_n=[カ]$である.
(4)$0 \leqq \theta<2\pi$のとき,$y=1-2 \sin \theta-\cos 2\theta$の最大値を求めると,$y=[キ]$であり,$z=\sin^2 \theta+\sqrt{3} \sin \theta \cos \theta+2 \cos^2 \theta$の最大値を求めると,$z=[ク]$である.
(5)$3$つのサイコロを同時に投げるとき,出た目の和が$4$以下である確率は$[ケ]$であり,出た目の和が奇数であるか$5$以上である確率は$[コ]$である.
南山大学 私立 南山大学 2014年 第2問
$a>0$,$b>0$,$c>0$とする.原点を$\mathrm{O}$とする座標空間に$3$点$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(0,\ b,\ 0)$,$\mathrm{C}(0,\ 0,\ c)$をとり,$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とする.

(1)$\mathrm{G}$の座標を$a,\ b,\ c$で表せ.
(2)$\mathrm{G}$を通り,$\overrightarrow{\mathrm{OG}}$と垂直な平面を$\alpha$とし,$\alpha$と$x$軸,$y$軸,$z$軸との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標を$a,\ b,\ c$で表せ.
(3)$(2)$の$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$について,$\overrightarrow{\mathrm{PQ}}$と$\overrightarrow{\mathrm{PR}}$のなす角を$\theta$とする.$\cos \theta$を$a,\ b,\ c$で表せ.
南山大学 私立 南山大学 2014年 第3問
曲線$y=e^{-x} \cos x$上の点$(a,\ e^{-a} \cos a)$における接線の方程式を$y=g(x)$とする.

(1)$g(x)$を求めよ.
(2)定積分$\displaystyle A=\int_0^{\frac{\pi}{2}} \sin x \, dx$と$\displaystyle B=\int_0^{\frac{\pi}{2}} x \sin x \, dx$を計算せよ.
(3)定積分$\displaystyle S=\int_0^{\frac{\pi}{2}} g(x) \sin x \, dx$を計算せよ.
(4)$a$が$0 \leqq a \leqq \pi$の範囲を動くとき,$(3)$の$S$を最大にする$a$の値を求めよ.
学習院大学 私立 学習院大学 2014年 第1問
大中小$3$つのサイコロを同時に投げ,出た目をそれぞれ$a,\ b,\ c$とする.また,これらを並べてできる$3$桁の整数$abc$を$n$とする.たとえば,$a=2$,$b=5$,$c=1$なら$n=251$である.

(1)$n$が偶数である確率を求めよ.
(2)$n$を$3$で割った余りが$2$である確率を求めよ.
(3)$n \geqq 325$である確率を求めよ.
学習院大学 私立 学習院大学 2014年 第2問
三角形$\mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{AC}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とし,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさをそれぞれ$A,\ B,\ C$とする.このとき,$3$つの条件
\[ (a+b+c)(a-b+c)=3ac,\quad \sin A \sin C=\frac{1+\sqrt{3}}{4},\quad A \leqq C \]
が成り立っているとする.

(1)$\cos B$を求めよ.
(2)$A,\ B,\ C$を求めよ.
学習院大学 私立 学習院大学 2014年 第3問
平面上に$3$点$\mathrm{A}(0,\ a)$,$\mathrm{B}(-t,\ t^2-a)$,$\mathrm{C}(t,\ t^2-a)$があり,条件
\[ a>0,\quad 0<t \leqq \sqrt{a},\quad \triangle \mathrm{ABC} \text{は正三角形} \]
が成り立っているとする.

(1)$a$を$t$で表せ.
(2)$0<t \leqq \sqrt{3}$であることを示せ.
(3)$2$つの放物線$y=x^2-a$,$y=-x^2+a$で囲まれた部分の面積を$S$とし,$\triangle \mathrm{ABC}$の面積を$T$とする.$t$が$(2)$の範囲を動くとき,$\displaystyle \frac{S}{T}$の最小値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。