タグ「不等号」の検索結果

164ページ目:全4604問中1631問~1640問を表示)
島根大学 国立 島根大学 2014年 第4問
$a,\ b,\ c,\ n$を自然数とし,$a \leqq b \leqq c$かつ$n(a+b+c)=abc$をみたすとする.このとき,次の問いに答えよ.

(1)$a=b=c$のとき,$n$は$3$の倍数であることを示せ.
(2)$n=3$のとき,自然数の組$(a,\ b,\ c)$をすべて求めよ.
島根大学 国立 島根大学 2014年 第2問
$a,\ b$は$a<b$をみたす実数とする.放物線$C:y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$を考える.このとき,次の問いに答えよ.

(1)直線$\mathrm{AB}$の方程式を$a$と$b$を用いて表せ.
(2)放物線$C$と直線$\mathrm{AB}$で囲まれた図形の面積$S$を$a$と$b$を用いて表せ.
(3)$a<t<b$の範囲で点$\mathrm{P}(t,\ t^2)$が動くとき,放物線$C$と直線$\mathrm{AP}$で囲まれた図形の面積を$S_1(t)$,放物線$C$と$2$直線$\mathrm{AB}$,$\mathrm{AP}$で囲まれた図形の面積を$S_2(t)$とする.このとき,等式$S_2(t)=7S_1(t)$をみたす$t$を$a$と$b$を用いて表せ.
島根大学 国立 島根大学 2014年 第2問
$a,\ b$は$a<b$をみたす実数とする.放物線$C:y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$を考える.このとき,次の問いに答えよ.

(1)直線$\mathrm{AB}$の方程式を$a$と$b$を用いて表せ.
(2)放物線$C$と直線$\mathrm{AB}$で囲まれた図形の面積$S$を$a$と$b$を用いて表せ.
(3)$a<t<b$の範囲で点$\mathrm{P}(t,\ t^2)$が動くとき,放物線$C$と直線$\mathrm{AP}$で囲まれた図形の面積を$S_1(t)$,放物線$C$と$2$直線$\mathrm{AB}$,$\mathrm{AP}$で囲まれた図形の面積を$S_2(t)$とする.このとき,等式$S_2(t)=7S_1(t)$をみたす$t$を$a$と$b$を用いて表せ.
茨城大学 国立 茨城大学 2014年 第4問
$0$でない実数$t$に対して,座標空間における$3$点$\mathrm{P}(t,\ 0,\ 0)$,$\displaystyle \mathrm{Q} \left( t,\ \frac{1}{1+t^2},\ 0 \right)$,$\displaystyle \mathrm{R} \left( t,\ 0,\ \frac{t}{1+t^2} \right)$を考える.以下の各問に答えよ.

(1)三角形$\mathrm{PQR}$の面積を$S(t)$とする.実数$t$が$\displaystyle \frac{1}{2} \leqq t \leqq 1$の範囲を動くとき,$S(t)$の最大値とそのときの$t$の値を求めよ.
(2)実数$t$が$\displaystyle \frac{1}{2} \leqq t \leqq 1$の範囲を動くとき,三角形$\mathrm{PQR}$が通過してできる立体の体積$V$を求めよ.
茨城大学 国立 茨城大学 2014年 第2問
次の各問に答えよ.ここで,必要ならば$0.301<\log_{10}2<0.302$であることを用いてもよい.

(1)$k \leqq \log_{\sqrt{2}}25<k+1$を満たす自然数$k$を求めよ.
(2)$8^n$の桁数が$26$以上になる最小の自然数$n$を求めよ.例えば,$2014$の桁数は$4$である.
茨城大学 国立 茨城大学 2014年 第3問
放物線$y=x^2$を$C$として,$C$上に点$\mathrm{A}(-1,\ 1)$をとる.正の実数$a$に対して,点$\mathrm{B}(a,\ a^2)$における$C$の接線を$\ell_1$とし,$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell_2$とする.また,$C$と$\ell_1$および$x$軸とで囲まれた図形の面積を$S_1$とし,$C$と$\ell_2$で囲まれた図形の$x \geqq 0$の部分の面積を$S_2$とする.このとき,次の各問に答えよ.

(1)接線$\ell_1$の方程式を求めよ.
(2)$\displaystyle 2<\frac{S_2}{S_1}<2.01$を満たすための$a$の条件を求めよ.
宇都宮大学 国立 宇都宮大学 2014年 第3問
三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{D}$,$\mathrm{AD}$と$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)$\mathrm{AP}:\mathrm{PD}=t:1-t (0<t<1)$とおくとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$と$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(3)直線$\mathrm{OP}$と辺$\mathrm{AB}$との交点を$\mathrm{E}$とするとき,$\mathrm{AE}:\mathrm{EB}$を求めよ.
(4)$\angle \mathrm{AOB}={90}^\circ$,$\overrightarrow{\mathrm{OP}} \perp \overrightarrow{\mathrm{AB}}$であるとき,$\mathrm{OA}:\mathrm{OB}:\mathrm{AB}$を求めよ.
山形大学 国立 山形大学 2014年 第1問
座標平面上の点$(-2,\ 1)$を$\mathrm{A}$,点$\displaystyle \left( a,\ \frac{1}{4}a^2 \right)$を$\mathrm{B}$とする.ただし,$0<a<2$とする.また,$\displaystyle y=\frac{1}{4}x^2$で表される放物線を$C$とする.このとき,次の問に答えよ.

(1)放物線$C$と線分$\mathrm{AB}$で囲まれる部分の面積$S$を$a$の式で表せ.
(2)直線$\mathrm{AB}$が直線$x=2$と交わる点を$\mathrm{D}$とする.放物線$C$と線分$\mathrm{BD}$および直線$x=2$で囲まれる部分の面積$T$を$a$の式で表せ.
(3)次の条件によって定められる数列$\{p_n\},\ \{q_n\}$の一般項を求めよ.

(i) $p_1=1,\ p_n>0,$
(ii) $\displaystyle q_n=\frac{1}{4}{p_n}^2,$
(iii) $p_n-p_{n+1}=2 \sqrt{q_nq_{n+1}}$

(4)$a=p_n$のとき,$(1)$と$(2)$で求めた$S$と$T$に対し,$T>S$となる最小の$n$を求めよ.
茨城大学 国立 茨城大学 2014年 第1問
区間$0<x<\pi$で関数$y=f(x)=\cos (\sqrt{2}x)$を考え,そのグラフを$C$とする.$C$上の点$\mathrm{P}(\theta,\ \cos (\sqrt{2} \theta))$における$C$の法線を$\ell$,$\ell$と$x$軸との交点を$\mathrm{Q}$,点$\mathrm{P}$と点$\mathrm{Q}$の距離を$g(\theta)$とする.ただし,点$\mathrm{P}$における$C$の法線とは,点$\mathrm{P}$を通りかつ$\mathrm{P}$での$C$の接線に直交する直線のことである.以下の各問に答えよ.

(1)$f(x)$の増減の様子を調べ,$C$の概形をかけ.さらに,$f(x)$の最小値を与える$x$の値,および$C$と$x$軸との交点の$x$座標を求めよ.
(2)$\ell$の方程式を求めよ.
(3)$\mathrm{Q}$の座標を求めよ.
(4)$\theta$が$0<\theta<\pi$の範囲を動くとき,$t=\cos^2 (\sqrt{2} \theta)$の動く範囲と$g(\theta)$の最大値を求めよ.
(5)$\theta$が$0<\theta<\pi$の範囲を動くとき,$g(\theta)$の最大値を与える$\theta$の値をすべて求めよ.
宇都宮大学 国立 宇都宮大学 2014年 第4問
座標平面において,不等式$y \geqq x^2$の表す領域を$D$とし,$D$内の点$(a,\ b)$に対して連立不等式
\[ y \geqq x^2,\quad x \geqq a,\quad b \geqq y \]
の表す領域を$E(a,\ b)$とする.このとき,次の問いに答えよ.

(1)領域$E(a,\ b)$の面積$S$を$a$と$b$を用いて表せ.
(2)曲線$4y=(x+1)^2$上の点$(2t-1,\ t^2)$が領域$D$内を動くとき,実数$t$の取り得る値の範囲を求めよ.
(3)$(2)$で求めた範囲の$t$に対して,領域$E(2t-1,\ t^2)$の面積を$f(t)$とするとき,関数$f(t)$を$t$の式で表せ.
(4)$(3)$で定めた関数$f(t)$の最大値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。