タグ「不等号」の検索結果

163ページ目:全4604問中1621問~1630問を表示)
浜松医科大学 国立 浜松医科大学 2014年 第2問
関数$\displaystyle f(x)=\frac{3 \sqrt{3}}{\sin x}-\frac{1}{\cos x} \left( 0<|x|<\frac{\pi}{2} \right)$を考える.以下の問いに答えよ.

(1)$y=f(x)$の増減表を作成し,極値を求めよ.
(2)$f(x)$の第$2$次導関数$f^{\prime\prime}(x)$は,$3$次式$P(t)=t(2t^2-1)$を用いて,
\[ f^{\prime\prime}(x)=3 \sqrt{3} P \left( \frac{1}{\sin x} \right)-P \left( \frac{1}{\cos x} \right) \]
と表されることを示せ.また,$\displaystyle 0<x_1<x_2<\frac{\pi}{2}$のとき$f^{\prime\prime}(x_1)>f^{\prime\prime}(x_2)$となることを示せ.
(3)$k$を定数とするとき,方程式$f(x)=k$の異なる実数解は何個あるか.$k$の値によって分類せよ.
(4)$y=f(x)$の変曲点はただ$1$つ存在することを示せ.また,この変曲点が第何象限にあるか,調べよ.
福井大学 国立 福井大学 2014年 第5問
$\mathrm{O}$を原点とする座標平面上に点$\mathrm{A}(2,\ 0)$と放物線$\displaystyle C:y=\frac{1}{2}x^2-3x+6$があり,$C$上の点で$x$座標が$t$と$2t$であるものをそれぞれ$\mathrm{P}$,$\mathrm{Q}$とおく.このとき,以下の問いに答えよ.ただし$t>0$とする.

(1)$3$点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{Q}$が一直線上にあるときの$t$の値を$t_0$とおく.$t_0$の値を求めよ.
(2)$t=t_0$のとき,$\triangle \mathrm{OAQ}$の周および内部と,不等式$\displaystyle y \geqq \frac{1}{2}x^2-3x+6$の表す領域との共通部分の面積を求めよ.
(3)$0<t<t_0$を満たす$t$に対して,$\triangle \mathrm{APQ}$の面積を$S(t)$とおくとき,$S(t)$の最大値とそのときの$t$の値を求めよ.
山口大学 国立 山口大学 2014年 第2問
座標平面において,方程式$\displaystyle \frac{x^2}{9}-\frac{y^2}{4}=1$が表す双曲線$C$と点$\mathrm{P}(a,\ 0)$がある.ただし,$a>3$とする.点$\mathrm{P}$を通り$y$軸に平行な直線と双曲線$C$との交点の一つである点$\mathrm{Q}(a,\ b)$をとる.ただし,$b>0$とする.さらに,点$\mathrm{Q}$における双曲線$C$の接線$\ell$と$x$軸との交点を$\mathrm{R}(c,\ 0)$とする.このとき,次の問いに答えなさい.

(1)$a$を用いて$b$を表しなさい.
(2)$a$を用いて接線$\ell$の方程式を表しなさい.
(3)$a$を用いて$c$を表しなさい.
(4)極限値$\displaystyle \lim_{a \to \infty} \frac{\mathrm{PQ}}{\mathrm{PR}}$を求めなさい.
山口大学 国立 山口大学 2014年 第4問
関数
\[ f(x)=\int_0^x |(t-1)(t-2)| \, dt-|\int_0^x (t-1)(t-2) \, dt| \]
に対して,$y=f(x) (x>0)$のグラフをかきなさい.ただし,グラフの凹凸は調べなくてよい.
山口大学 国立 山口大学 2014年 第4問
関数
\[ f(x)=\int_0^x |(t-1)(t-2)| \, dt-|\int_0^x (t-1)(t-2) \, dt| \]
に対して,$y=f(x) (x>0)$のグラフをかきなさい.ただし,グラフの凹凸は調べなくてよい.
島根大学 国立 島根大学 2014年 第2問
$\displaystyle f(x)=\frac{8x}{\sqrt{x^2+1}}$とするとき,次の問いに答えよ.

(1)関数$y=f(x)$の凹凸と漸近線を調べて,そのグラフの概形をかけ.
(2)$k$を正の定数とする.関数$y=f(x)$のグラフと直線$y=x+k$がちょうど$2$個の共有点をもつとき,$k$の値を求めよ.
(3)$k$を$(2)$で求めた定数とする.このとき,$x \geqq 0$の範囲で,関数$y=f(x)$のグラフと直線$y=x+k$および$y$軸で囲まれた図形の面積$S$を求めよ.
島根大学 国立 島根大学 2014年 第3問
$a_1=2$とし,$f(x)=x^2-3$とする.曲線$y=f(x)$上の点$(a_1,\ f(a_1))$における接線が$x$軸と交わる点の$x$座標を$a_2$とする.以下同様に,$n=3,\ 4,\ \cdots$に対して,曲線$y=f(x)$上の点$(a_{n-1},\ f(a_{n-1}))$における接線が$x$軸と交わる点の$x$座標を$a_n$とする.数列$\{a_n\}$に対して,次の問いに答えよ.

(1)$a_2$を求めよ.
(2)$a_{n+1}$を$a_n$を用いて表せ.
(3)$a_n \geqq \sqrt{3}$を示せ.
(4)$\displaystyle a_n-\sqrt{3} \leqq {\left( \frac{1}{2} \right)}^{n-1} (2-\sqrt{3})$を示し,$\displaystyle \lim_{n \to \infty} a_n$を求めよ.
島根大学 国立 島根大学 2014年 第2問
$\displaystyle f(x)=\frac{8x}{\sqrt{x^2+1}}$とするとき,次の問いに答えよ.

(1)関数$y=f(x)$の凹凸と漸近線を調べて,そのグラフの概形をかけ.
(2)$k$を正の定数とする.関数$y=f(x)$のグラフと直線$y=x+k$がちょうど$2$個の共有点をもつとき,$k$の値を求めよ.
(3)$k$を$(2)$で求めた定数とする.このとき,$x \geqq 0$の範囲で,関数$y=f(x)$のグラフと直線$y=x+k$および$y$軸で囲まれた図形の面積$S$を求めよ.
島根大学 国立 島根大学 2014年 第1問
$3$つの箱$X,\ Y,\ Z$と$3$つの玉$a,\ b,\ c$があり,$1$つの箱には$1$つの玉が入るとする.箱$X$には$a$が,箱$Y$には$b$が,箱$Z$には$c$が入っている状態から始めて,次の操作を繰り返し行う.

「数字$1,\ 2,\ 3,\ 4,\ 5$の中から無作為に$1$つの数字$m$を選ぶ.$m=1$ならば,箱$Y,\ Z$にある玉をそれぞれ箱$Z,\ Y$に移す.$m=2$ならば,箱$X,\ Z$にある玉をそれぞれ箱$Z,\ X$に移す.$m=3$ならば,箱$X,\ Y$にある玉をそれぞれ箱$Y,\ X$に移す.$m=4$ならば,箱$X,\ Y,\ Z$にある玉をそれぞれ箱$Y,\ Z,\ X$に移す.$m=5$ならば,箱$X,\ Y,\ Z$にある玉をそれぞれ箱$Z,\ X,\ Y$に移す.」

この操作を$n$回繰り返したあとに$3$つの玉が最初の状態に戻っている確率を$p_n$とする.箱$X,\ Y,\ Z$にそれぞれ玉$x,\ y,\ z$が入っている状態を$(x,\ y,\ z)$と表す.たとえば,最初の状態は$(a,\ b,\ c)$である.このとき,次の問いに答えよ.

(1)$1$回目の操作を行ったあとの起こりうる状態をすべて挙げ,$p_1$,$p_2$を求めよ.
(2)$n$回目の操作を行ったあとの状態が最初の状態$(a,\ b,\ c)$となっていない確率を$q_n$とする.$n \geqq 1$のとき,$\displaystyle p_{n+1}=\frac{1}{5}q_n$が成り立つことを示せ.
(3)$p_n$を求めよ.
島根大学 国立 島根大学 2014年 第1問
$3$つの箱$X,\ Y,\ Z$と$3$つの玉$a,\ b,\ c$があり,$1$つの箱には$1$つの玉が入るとする.箱$X$には$a$が,箱$Y$には$b$が,箱$Z$には$c$が入っている状態から始めて,次の操作を繰り返し行う.

「数字$1,\ 2,\ 3,\ 4,\ 5$の中から無作為に$1$つの数字$m$を選ぶ.$m=1$ならば,箱$Y,\ Z$にある玉をそれぞれ箱$Z,\ Y$に移す.$m=2$ならば,箱$X,\ Z$にある玉をそれぞれ箱$Z,\ X$に移す.$m=3$ならば,箱$X,\ Y$にある玉をそれぞれ箱$Y,\ X$に移す.$m=4$ならば,箱$X,\ Y,\ Z$にある玉をそれぞれ箱$Y,\ Z,\ X$に移す.$m=5$ならば,箱$X,\ Y,\ Z$にある玉をそれぞれ箱$Z,\ X,\ Y$に移す.」

この操作を$n$回繰り返したあとに$3$つの玉が最初の状態に戻っている確率を$p_n$とする.箱$X,\ Y,\ Z$にそれぞれ玉$x,\ y,\ z$が入っている状態を$(x,\ y,\ z)$と表す.たとえば,最初の状態は$(a,\ b,\ c)$である.このとき,次の問いに答えよ.

(1)$1$回目の操作を行ったあとの起こりうる状態をすべて挙げ,$p_1$,$p_2$を求めよ.
(2)$n$回目の操作を行ったあとの状態が最初の状態$(a,\ b,\ c)$となっていない確率を$q_n$とする.$n \geqq 1$のとき,$\displaystyle p_{n+1}=\frac{1}{5}q_n$が成り立つことを示せ.
(3)$p_n$を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。