タグ「不等号」の検索結果

159ページ目:全4604問中1581問~1590問を表示)
小樽商科大学 国立 小樽商科大学 2014年 第1問
次の$[ ]$の中を適当に補いなさい.

(1)$1$回の操作で溶液の不純物の$25 \, \%$を除去出来る装置で不純物を除去するとき,この操作を複数回行い,元の不純物の$98 \, \%$以上を除去するには,最低何回以上この操作をする必要があるかを求めると$[ ]$回以上.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(2)中心が$(0,\ 1)$で半径$1$の円がある.下図のように,この円の直径$\mathrm{AB}$と原点$\mathrm{O}(0,\ 0)$と,$x$軸上の点$\mathrm{C}(1,\ 0)$をとる.$\angle \mathrm{AOC}={60}^\circ$とする.点$\mathrm{A}$の$x$座標を$t$(ただし$t>0$)とし,$\triangle \mathrm{OAB}$の面積を$S$とするとき,$t$と$S$を求めると$(t,\ S)=[ ]$.
(図は省略)
(3)$4$桁の正の整数$n$に対し,千の位,百の位,十の位,一の位の数字をそれぞれ$a,\ b,\ c,\ d$とする.$a>b>c>d$を満たす$n$は全部で$p$個あり,$a>c$かつ$b>d$を満たす$n$は全部で$q$個ある.このとき,$p$と$q$を求めると$(p,\ q)=[ ]$.
小樽商科大学 国立 小樽商科大学 2014年 第4問
下図のように半径$1$の円$C_1$の内部に半径$x$の円$C_2$と半径$(1-x)$の円$C_3$が内接している.ただし$0<x<1$とする.円$C_1$の内部で円$C_2$と円$C_3$の外部の部分(図の斜線部分)の面積の最大値を求めよ.
(図は省略)
小樽商科大学 国立 小樽商科大学 2014年 第5問
$2$つの曲線$K_1:y=\sin x$と$K_2:y=-\cos x+a$について,次の問いに答えよ.ただし,$a$は実数とし,$0 \leqq x \leqq \pi$とする.

(1)$K_1$と$K_2$が接するとき,接点の座標と$a$の値を求めよ.
(2)$(1)$で求めた$a$に対して,$y$軸と$K_1$,$K_2$とで囲まれた部分の面積を求めよ.
群馬大学 国立 群馬大学 2014年 第3問
座標平面において,動点$\mathrm{P}(x,\ y)$は単位円$C$上の点$\mathrm{Q}(1,\ 0)$を出発し,$C$上を反時計回りに$1$周する.弧$\mathrm{PQ}$の長さは,出発してからの時間に比例する.$\mathrm{P}$が$1$周するのに$T$秒かかる.このとき,以下の問いに答えよ.

(1)出発してから$t$秒後($0 \leqq t \leqq T$)の点$\mathrm{P}(x,\ y)$について$x,\ y$を$t$と$T$を用いて表せ.
(2)出発してから$t$秒後($\displaystyle 0 \leqq t \leqq \frac{T}{4}$)の点$\mathrm{P}(x,\ y)$に対して$z=2x^2+xy+y^2$を考える.$z$の最大値と最小値を求めよ.また最大値,最小値をとるのは出発してから何秒後か$T$を用いて表せ.
群馬大学 国立 群馬大学 2014年 第3問
座標平面において,動点$\mathrm{P}(x,\ y)$は単位円$C$上の点$\mathrm{Q}(1,\ 0)$を出発し,$C$上を反時計回りに$1$周する.弧$\mathrm{PQ}$の長さは,出発してからの時間に比例する.$\mathrm{P}$が$1$周するのに$T$秒かかる.このとき,以下の問いに答えよ.

(1)出発してから$t$秒後($0 \leqq t \leqq T$)の点$\mathrm{P}(x,\ y)$について$x,\ y$を$t$と$T$を用いて表せ.
(2)出発してから$t$秒後($\displaystyle 0 \leqq t \leqq \frac{T}{4}$)の点$\mathrm{P}(x,\ y)$に対して$z=2x^2+xy+y^2$を考える.$z$の最大値と最小値を求めよ.また最大値,最小値をとるのは出発してから何秒後か$T$を用いて表せ.
群馬大学 国立 群馬大学 2014年 第2問
座標平面において,動点$\mathrm{P}(x,\ y)$は単位円$C$上の点$\mathrm{Q}(1,\ 0)$を出発し,$C$上を反時計回りに$1$周する.弧$\mathrm{PQ}$の長さは,出発してからの時間に比例する.$\mathrm{P}$が$1$周するのに$T$秒かかる.このとき,以下の問いに答えよ.

(1)出発してから$t$秒後($0 \leqq t \leqq T$)の点$\mathrm{P}(x,\ y)$について$x,\ y$を$t$と$T$を用いて表せ.
(2)出発してから$t$秒後($\displaystyle 0 \leqq t \leqq \frac{T}{4}$)の点$\mathrm{P}(x,\ y)$に対して$z=2x^2+xy+y^2$を考える.$z$の最大値と最小値を求めよ.また最大値,最小値をとるのは出発してから何秒後か$T$を用いて表せ.
群馬大学 国立 群馬大学 2014年 第3問
$a,\ b$は実数で$a>0$,$b>1$とする.放物線$y=ax^2+1$と直線$y=b$との交点で第$1$象限にあるものを$\mathrm{P}_1$とし,放物線$\displaystyle y=\frac{1}{2}x^2$と直線$y=b$の交点で第$1$象限にあるものを$\mathrm{P}_2$とする.$\mathrm{P}_1$と$\mathrm{P}_2$の間の距離を$d$とするとき,以下の問いに答えよ.

(1)$\displaystyle a=\frac{1}{2}$のとき,$d \leqq 1$であるための$b$の値の範囲を求めよ.
(2)$\displaystyle a \neq \frac{1}{2}$のとき,$d \leqq 1$であるための$b$の値の範囲を$a$を用いて表せ.
群馬大学 国立 群馬大学 2014年 第4問
$n$を自然数とする.$5832$を底とする$n$の対数$\log_{5832}n$が有理数であり$\displaystyle \frac{1}{2}<\log_{5832}n<1$を満たすとき,$n$を求めよ.
群馬大学 国立 群馬大学 2014年 第5問
座標平面上の曲線$C$は媒介変数$t (t \geqq 0)$を用いて$x=t^2+2t+\log (t+1)$,$y=t^2+2t-\log (t+1)$と表される.$C$上の点$\mathrm{P}(a,\ b)$における$C$の接線の傾きが$\displaystyle \frac{2e-1}{2e+1}$であるとする.ただし,$e$は自然対数の底である.このとき,以下の問いに答えよ.

(1)$a$と$b$の値を求めよ.
(2)$\mathrm{Q}$を座標$(b,\ a)$の点とする.直線$\mathrm{PQ}$,直線$y=x$と曲線$C$で囲まれた図形を,直線$y=x$の周りに$1$回転してできる立体の体積を求めよ.
高知大学 国立 高知大学 2014年 第2問
$\{a_n\},\ \{b_n\}$を${a_n}^2-b_n \geqq 0 (n=1,\ 2,\ \cdots)$となる数列とし,$3$次関数
\[ y=x^3+3a_nx^2+3b_nx+1 \]
のグラフの接線の傾きが$0$となる接点の$x$座標のうち小さくない方を$c_n$とする.このとき,次の問いに答えよ.

(1)$\{a_n\},\ \{b_n\}$が$a_n=n$,$b_n=n^2$で与えられる数列のとき,$\{c_n\}$を求めよ.
(2)$\{b_n\}$を初項も公差も$0$である等差数列とする.このとき,$c_n=b_n (n=1,\ 2,\ \cdots)$となるための条件を求めよ.
(3)$\{a_n\},\ \{b_n\}$をそれぞれ公比が$r$,$r^2$の等比数列とする.このとき,$\{c_n\}$が等比数列になるための条件を求めよ.
(4)$\{a_n\}$が初項$100$,公差$-3$の等差数列で,$\{b_n\}$は初項$396$,公差$-12$の等差数列のとき,$\{c_n\}$を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。