タグ「不等号」の検索結果

158ページ目:全4604問中1571問~1580問を表示)
徳島大学 国立 徳島大学 2014年 第2問
$0<a<1$とする.曲線$y=|x|x$を$C_1$とし,曲線$y=ax^2+x-a$を$C_2$とする.

(1)$C_1$と$C_2$の共有点のうち,第$3$象限にある共有点の座標を求めよ.
(2)$C_1$と$C_2$の共有点が$2$個であるとき,$a$の値を求めよ.
(3)$a$が$(2)$で求めた値をとるとき,$C_1$と$C_2$で囲まれた部分の面積を求めよ.
徳島大学 国立 徳島大学 2014年 第4問
$p$を素数とする.初項,公差がともに$5p$の等差数列を$\{a_n\}$とする.数列$\{b_n\}$は公差が$p$の等差数列で$\displaystyle \sum_{n=1}^p a_n=a_1+a_p+5 \sum_{n=1}^p b_n$を満たす.

(1)$b_1$を求めよ.
(2)$p=2$のとき,$\displaystyle \frac{a_n}{b_n}$の値が自然数となるような$n$をすべて求めよ.
(3)$p \geqq 3$とする.$\displaystyle \frac{a_n}{b_n}$の値が自然数となるような$p$と$n$の組$(p,\ n)$をすべて求めよ.
香川大学 国立 香川大学 2014年 第5問
曲線$\displaystyle C_1:y=\tan x \left( 0 \leqq x<\frac{\pi}{2} \right)$,$\displaystyle C_2:y=\cos x \left( 0 \leqq x<\frac{\pi}{2} \right)$について,次の問に答えよ.

(1)$2$曲線$C_1$,$C_2$の共有点の$x$座標を$a$とするとき,$\sin a$の値を求めよ.
(2)曲線$C_1,\ C_2$と$y$軸で囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2014年 第4問
$0<r<R$とし,半径$R$の円に半径$r$の小円をいくつか外接させる.ただし,小円どうしは接するか互いに交わらないものとする(図参照).このときの小円の個数の最大値を$n$としたとき,次の問に答えよ.必要ならば,下の数表(三角関数表)を用いてよい.
(図は省略)

$*$ 三角関数表は省略した.
(1)$R=3r$のとき,$n$を求めよ.
(2)$\displaystyle n \leqq \pi \left( \frac{R}{r}+1 \right)$を示せ.
防衛医科大学校 国立 防衛医科大学校 2014年 第3問
$\mathrm{AB}=3$,$\mathrm{AD}=4$,$\mathrm{AE}=1$である図のような直方体$\mathrm{ABCD}$-$\mathrm{EFGH}$において,辺$\mathrm{CG}$,$\mathrm{CD}$,$\mathrm{AD}$をそれぞれ$1-p:p (0<p<1)$に分ける点を$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$とする.点$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$が作る平面を$L$,$L$と$2$点$\mathrm{A}$,$\mathrm{E}$を通る直線との交点,$2$点$\mathrm{E}$,$\mathrm{F}$を通る直線との交点,$2$点$\mathrm{F}$,$\mathrm{G}$を通る直線との交点をそれぞれ$\mathrm{U}$,$\mathrm{V}$,$\mathrm{W}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AE}}=\overrightarrow{c}$として以下の問に答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{AU}}$,$\overrightarrow{\mathrm{AV}}$,$\overrightarrow{\mathrm{AW}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表し,$\mathrm{U}$,$\mathrm{V}$,$\mathrm{W}$がそれぞれ辺$\mathrm{AE}$,$\mathrm{EF}$,$\mathrm{FG}$上にあることを示せ.
(2)六角形$\mathrm{UVWXYZ}$の面積はいくらか.
防衛医科大学校 国立 防衛医科大学校 2014年 第4問
$\displaystyle y=f(x)=\tan x \left( -\frac{\pi}{2}<x<\frac{\pi}{2},\ -\infty<y<\infty \right)$の逆関数を$\displaystyle y=f^{-1}(x)=\tan^{-1}x \left( -\infty<x<\infty,\ -\frac{\pi}{2}<y<\frac{\pi}{2} \right)$とする.このとき,以下の問に答えよ.

(1)次の問に答えよ.

(i) $\displaystyle \tan^{-1} \frac{1}{2}+\tan^{-1} \frac{1}{3}$はいくらか.

(ii) $\displaystyle \tan^{-1} \frac{1}{2}+\tan^{-1} \frac{1}{3}=\tan^{-1} \frac{1}{4}+\tan^{-1} \frac{1}{x}$を満たす実数$x$を求めよ.

(2)次の問に答えよ.

(i) $y=f^{-1}(x)$のグラフの概形を描け.
(ii) $(ⅰ)$のグラフの点$\displaystyle \left( 1,\ \frac{\pi}{4} \right)$における接線を求めよ.
(iii) 導関数$(\tan^{-1}x)^\prime$を求めよ.

(3)不定積分$\displaystyle \int \frac{1}{x^2+x+1} \, dx$を求めよ.
徳島大学 国立 徳島大学 2014年 第3問
$n$枚のカードに$1$から$n$までの自然数がひとつずつ書かれている.異なるカードには異なる数が書かれている.これら$n$枚のカードを横一列に並べて,左端から$i$番目($1 \leqq i \leqq n$)のカードに書かれた数を$a_i$とする.

(1)$n=5$のとき,$a_1<a_2<a_3$かつ$a_3>a_4>a_5$を満たすカードの並べ方の総数を求めよ.
(2)$n \geqq 3$とする.次の条件$(ⅰ)$,$(ⅱ)$を満たすカードの並べ方の総数を$n$の式で表せ.ただし,$(ⅱ)$では,$k=2$のとき$a_1<a_2<\cdots<a_k$は$a_1<a_2$を表し,$k=n-1$のとき$a_k>a_{k+1}>\cdots>a_n$は$a_{n-1}>a_n$を表す.

(i) $1<k<n$
(ii) $a_1<a_2<\cdots<a_k$かつ$a_k>a_{k+1}>\cdots>a_n$

(3)$n \geqq 4$とする.次の条件$(ⅰ)$,$(ⅱ)$,$(ⅲ)$を満たすカードの並べ方の総数を$n$の式で表せ.ただし,$(ⅲ)$のそれぞれの不等式は$(2)$と同様に,$p=2$のとき$a_1>a_2$を表し,$q=p+1$のとき$a_p<a_{p+1}$を表し,$q=n-1$のとき$a_{n-1}>a_n$を表す.

(i) $1<p<q<n$
(ii) $a_1=n$かつ$a_p=1$
(iii) $a_1>a_2>\cdots>a_p$かつ$a_p<a_{p+1}<\cdots<a_q$かつ$a_q>a_{q+1}>\cdots>a_n$
高知大学 国立 高知大学 2014年 第1問
$0 \leqq \theta \leqq \pi$とする.関数$f(x)=(x-\cos \theta+\sin \theta)^2+2 \sin^2 \theta-1$について,次の問いに答えよ.

(1)方程式$f(x)=0$が実数解を持つような$\theta$の範囲を求めよ.
(2)方程式$f(x)=0$が実数解を持つとき,その二つの解を$\alpha,\ \beta$とする.このとき,$\alpha+\beta$の最大値および最小値を求めよ.
(3)関数$y=f(x)$のグラフと$x$軸で囲まれる部分の面積が$\displaystyle \frac{\sqrt{2}}{3}$となるときの$\theta$の値を求めよ.
高知大学 国立 高知大学 2014年 第3問
丸いピザを包丁で,まっすぐに切る.$1$回切るとどんな切り方をしてもピザは$2$片に分割される.$2$回だと$3$片か$4$片に分割される.このとき,$n$回切ったときの最大分割数を$a_n$とおく.例えば$a_1=2$,$a_2=4$,$a_3=7$である.次の問いに答えよ.

(1)$a_3 \geqq 7$,$a_4 \geqq 11$,$a_5 \geqq 16$であることを図により確かめよ.
(2)$n$回目に新しく切ったとき,その切り口はいくつかの線分に分かれる.その線分の数を$p_n$とおく.上手に切れば
\[ a_{n+1}=a_n+p_{n+1} \]
となる.このときの$p_{n+1}$を求めよ.
(3)$a_n$を求めよ.
(4)$100$片以上に分割するには最低何回切ればよいか.
小樽商科大学 国立 小樽商科大学 2014年 第3問
次の$[ ]$の中を適当に補いなさい.

(1)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$とするとき,$\sin^2 \theta+2 \sin \theta \cos \theta+3 \cos^2 \theta$の最大値$M$,最小値$m$を求めると$(M,\ m)=[ ]$.
(2)$\displaystyle 2014+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+\cdots +\frac{n}{4^{n-1}} (n \geqq 2)$の値を求めると$[ ]$.
(3)$0 \leqq a \leqq 3$とするとき,$\displaystyle \int_{-3}^3 |x(x-a)| \, dx$の最大値$M$と,それを与える$a$の値を求めると$(M,\ a)=[ ]$.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。