タグ「不等号」の検索結果

151ページ目:全4604問中1501問~1510問を表示)
弘前大学 国立 弘前大学 2014年 第2問
$\displaystyle f(x)=\frac{x}{{2}^x}$とし,$f^\prime(x)$を$f(x)$の導関数とする.このとき,次の問いに答えよ.

(1)定数$c$を$0 \leqq c \leqq 2$とする.このとき,$0 \leqq x \leqq 2$を満たす$x$に対して,不等式
\[ f(x) \leqq f^\prime(c)(x-c)+f(c) \]
が成り立つことを示せ.また,等号が成立するのはどのようなときか述べよ.
(2)$n$を自然数とする.$x_1,\ x_2,\ \cdots,\ x_n$は$0$以上の実数で,$x_1+x_2+\cdots +x_n=2$を満たすとする.このとき,不等式
\[ f(x_1)+f(x_2)+\cdots +f(x_n) \leqq n f \left( \frac{2}{n} \right) \]
が成り立つことを示せ.また,等号が成立するのはどのようなときか述べよ.
弘前大学 国立 弘前大学 2014年 第4問
数列$\{a_n\},\ \{b_n\}$を,
\[ \left\{ \begin{array}{lll}
a_1=1, & a_{n+1}=\sqrt{2b_n+1} & (n=1,\ 2,\ 3,\ \cdots) \\
b_1=3, & b_{n+1}=\sqrt{2a_n+1} & (n=1,\ 2,\ 3,\ \cdots) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
と定めるとき,次の問いに答えよ.

(1)$\alpha=1+\sqrt{2}$とする.自然数$n$に対して,不等式$|a_{n+1|-\alpha} \leqq \left( \displaystyle \frac{2}{1+\alpha} \right) |b_n-\alpha|$が成り立つことを示せ.
(2)極限値$\displaystyle \lim_{n \to \infty} a_n$,$\displaystyle \lim_{n \to \infty} b_n$を求めよ.
弘前大学 国立 弘前大学 2014年 第2問
$1$辺の長さが$1$の正四面体$\mathrm{ABCD}$に対し,辺$\mathrm{AB}$の中点を$\mathrm{E}$,辺$\mathrm{AC}$の中点を$\mathrm{F}$,辺$\mathrm{BD}$を$t:(1-t)$の比に内分する点を$\mathrm{G}$,辺$\mathrm{CD}$を$u:(1-u)$の比に内分する点を$\mathrm{H}$とする.ただし,$0<t<1$,$0<u<1$とする.次の問いに答えよ.

(1)$4$点$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$が同一平面上にあるならば,$t=u$が成り立つことを示せ.
(2)$t=u$のとき,$\mathrm{EF}^2+\mathrm{FH}^2+\mathrm{HG}^2+\mathrm{GE}^2$の値の範囲を求めよ.
琉球大学 国立 琉球大学 2014年 第3問
整数$m,\ n$は$m \geqq 1$,$n \geqq 2$をみたすとする.次の問いに答えよ.

(1)$x>0$のとき,$y=\log x$の第$1$次導関数$y^\prime$と第$2$次導関数$y^{\prime\prime}$を求めよ.
(2)座標平面上の$3$点$\mathrm{A}(m,\ \log m)$,$\mathrm{B}(m+1,\ \log m)$,$\mathrm{C}(m+1,\ \log (m+1))$を頂点とする三角形の面積を$S_m$とする.$S_m$を$m$を用いて表せ.
(3)$\displaystyle f(m)=\log m+S_m-\int_m^{m+1} \log x \, dx$とおく.$f(m)<0$が成り立つことを,$y=\log x$のグラフを用いて説明せよ.
(4)$f(1)+f(2)+\cdots +f(n-1)<0$であることを用いて,不等式
\[ \log 1+\log 2+\cdots +\log (n-1)<n \log n-n+1-\frac{1}{2} \log n \]
を証明せよ.
(5)不等式$\displaystyle n!<e \sqrt{n} \left( \frac{n}{e} \right)^n$を証明せよ.ただし,$e$は自然対数の底である.
九州工業大学 国立 九州工業大学 2014年 第1問
空間において$1$点$\mathrm{O}$を固定し,$\mathrm{O}$に関する位置ベクトルが$\overrightarrow{p}$である点$\mathrm{P}$を$\mathrm{P}(\overrightarrow{p})$で表す.$4$点$\mathrm{O}$,$\mathrm{A}(\overrightarrow{a})$,$\mathrm{B}(\overrightarrow{b})$,$\mathrm{C}(\overrightarrow{c})$を頂点とする四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{BC}$を$s:1-s (0<s<1)$に内分する点をそれぞれ$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.また,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とし,$\displaystyle \overrightarrow{h}=\overrightarrow{a}-\frac{9}{16} \overrightarrow{b}+\frac{9}{16} \overrightarrow{c}$を位置ベクトルとする平面$\alpha$上の点を$\mathrm{H}(\overrightarrow{h})$とする.$\mathrm{OA}=\mathrm{AB}=3$,$\mathrm{OB}=3 \sqrt{2}$,$\mathrm{OC}=\mathrm{BC}=4$,$\mathrm{AC}=5$として,次に答えよ.

(1)ベクトル$\overrightarrow{\mathrm{DE}}$,$\overrightarrow{\mathrm{DF}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$s$を用いて表せ.また,内積$\overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分$\mathrm{OH}$の長さを求めよ.
(3)$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$の定める平面が点$\mathrm{H}$を通るときの$s$の値を求めよ.
(4)$s$を$(3)$で求めた値とするとき,四面体$\mathrm{OAFC}$の体積$V$を求めよ.
弘前大学 国立 弘前大学 2014年 第3問
$a>0$,$b>1$とする.関数$f_1(x)=-2x^2-x+3$と$f_2(x)=ax^2-a(b+1)x+ab$に対し,関数$f(x)$を$x \leqq 1$のとき$f(x)=f_1(x)$,$x>1$のとき$f(x)=f_2(x)$と定める.また関数$g(x)$を$\displaystyle g(x)=\int_{-\frac{3}{2}}^x f(t) \, dt$と定める.次の問いに答えよ.

(1)微分係数${f_1}^\prime(1)$と${f_2}^\prime(1)$が等しくなるための$a,\ b$の関係式を求めよ.
(2)$a,\ b$が$(1)$で求めた関係式を満たすとする.$g(x)$の最小値を$b$の値によって場合分けをして求めよ.
福島大学 国立 福島大学 2014年 第1問
次の問いに答えなさい.

(1)$0 \leqq \theta<2\pi$のとき,次の方程式を解きなさい.
\[ \sin \theta+\sqrt{3} \cos \theta=-1 \]
(2)次の関数を微分しなさい.
\[ y=\log (x^2+2x+1) \]
(3)次の不定積分を求めなさい.
\[ \int \frac{2x^2}{x^3+1} \, dx \]
(4)$2$個のサイコロを同時に投げる.このとき,出た目の和が素数となる確率を求めなさい.
滋賀医科大学 国立 滋賀医科大学 2014年 第1問
さいころを$n$回($n \geqq 1$)投げて,出た目の最小公倍数を$l$とするとき,次の確率を求めよ.

(1)$2$と$3$の少なくとも一方が一度も出ない確率
(2)$l$が素数となる確率
(3)$l$が出た目の一つに等しい確率
滋賀医科大学 国立 滋賀医科大学 2014年 第3問
$\displaystyle f(x)=\frac{\sin x}{e^x},\ g(x)=\frac{\cos x}{e^x}$とする.

(1)関数$f(x)$の第$4$次までの導関数を求めよ.
(2)$0 \leqq x \leqq 2\pi$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の概形をかけ.
(3)$x \geqq 0$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の交点を$x$座標の小さい順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_n$,$\cdots$とするとき,$\mathrm{P}_n$の座標を求めよ.
(4)$\mathrm{P}_n$の$x$座標を$a_n$とする.$a_n \leqq x \leqq a_{n+1}$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$で囲まれた部分の面積を$S_n$とする.$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
滋賀大学 国立 滋賀大学 2014年 第1問
$m$を正の定数とし,放物線$C:y=x^2$上に点$\mathrm{P}(a,\ a^2)$をとる.ただし,$\displaystyle \frac{m}{2}<a<m$とする.$\mathrm{P}$を通り傾きが$m$の直線を$\ell_1$,$\mathrm{P}$を通り傾きが$2m$の直線を$\ell_2$とするとき,次の問いに答えよ.

(1)$C$と$\ell_1$で囲まれた図形の面積を$S_1$,$C$と$\ell_2$で囲まれた図形の面積を$S_2$とする.$S_1$と$S_2$を$a$と$m$を用いて表せ.
(2)$S_1$が$S_2$の$8$倍となるとき,$a$を$m$を用いて表せ.
(3)$a$を変化させたとき,$S_1+S_2$の最小値とそのときの$a$の値を$m$を用いて表せ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。