タグ「不等号」の検索結果

148ページ目:全4604問中1471問~1480問を表示)
岩手大学 国立 岩手大学 2014年 第3問
座標平面上に$2$つの曲線$C_1:y=-x^2+12$,$C_2:y=x^2-10x+29$がある.曲線$C_1$上を動く点$\mathrm{P}$の$x$座標を$a$とし,曲線$C_1$の点$\mathrm{P}$における接線を$\ell$とする.ただし,$a>0$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸,$y$軸で囲まれた三角形の面積を$S$とする.$S$を$a$を用いて表せ.また,$S$の最小値とそのときの$a$の値を求めよ.
(3)接線$\ell$と曲線$C_2$が$2$個の共有点をもつような$a$の値の範囲を求めよ.
(4)接線$\ell$と曲線$C_2$が$2$個の共有点をもつとき,それらの中点の軌跡を求めよ.
岩手大学 国立 岩手大学 2014年 第3問
座標平面上に点$\mathrm{A}(\pi,\ 1)$がある.また,関数$y=\cos x$のグラフ上に点$\mathrm{P}$をとり,$\mathrm{A}$と$\mathrm{P}$との中点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)$\mathrm{P}$の座標を$(t,\ \cos t)$とするとき,$\mathrm{Q}$の座標を$t$を用いて表せ.
(2)$\mathrm{Q}$の座標を$(x,\ y)$とするとき,$y$を$x$の関数として表せ.また,$y$の最大値と最小値を求めよ.
(3)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフを同一の座標平面上に描け.ただし,どちらも$0 \leqq x \leqq 2\pi$の範囲で描け.
(4)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフの交点について,その$y$座標の取り得る値をすべて求めよ.ただし,$x$の範囲はすべての実数とする.
岩手大学 国立 岩手大学 2014年 第4問
連続な関数$f(x)$が以下の関係式を満たすとき,次の問いに答えよ.
\[ \int_a^x (x-t)f(t) \, dt=2 \sin x-x+b \]
ただし,$a,\ b$は定数であり,$\displaystyle 0 \leqq a \leqq \frac{\pi}{2}$である.

(1)$\displaystyle \int_a^x f(t) \, dt$を求めよ.

(2)$f(x)$を求めよ.
(3)定数$a,\ b$の値を求めよ.

(4)$\displaystyle \int_\pi^{\frac{3}{2}\pi} \{f(x)\}^3 \, dx$を求めよ.
帯広畜産大学 国立 帯広畜産大学 2014年 第1問
$2$次方程式$x^2-x-1=0$の解を$\alpha,\ \beta (\alpha>\beta)$とし,
\[ \left( \begin{array}{c}
a_n \\
b_n
\end{array} \right)=\left( \begin{array}{cc}
\displaystyle\frac{\sqrt{5}}{5} & -\displaystyle\frac{\sqrt{5}}{5} \\
1 & 1
\end{array} \right) \left( \begin{array}{c}
\alpha^n \\
\beta^n
\end{array} \right) \]
によって数列$\{a_n\}$,$\{b_n\}$を定義する.ただし,$n$は自然数である.次の各問に答えなさい.

(1)次の各問に答えなさい.

(i) $\alpha,\ \beta$の値を求めなさい.
(ii) $a_1,\ a_2,\ a_3$の値を求めなさい.
(iii) $b_1,\ b_2,\ b_3$の値を求めなさい.

(2)ベクトル$\overrightarrow{p},\ \overrightarrow{q},\ \overrightarrow{r}$をそれぞれ$\overrightarrow{p}=(a_1,\ b_1)$,$\overrightarrow{q}=(a_2,\ b_2)$,$\overrightarrow{r}=(a_3,\ b_3)$と定義する.

(i) $\overrightarrow{p},\ \overrightarrow{q},\ \overrightarrow{r}$の大きさ$|\overrightarrow{p}|$,$|\overrightarrow{q}|$,$|\overrightarrow{r}|$を求めなさい.
(ii) $\overrightarrow{p}$と$\overrightarrow{q}$のなす角$\theta$について,$\cos \theta$,$\sin \theta$,$\tan \theta$を求めなさい.
(iii) $\overrightarrow{q}$と$\overrightarrow{r}$のなす角$\theta$について,$\cos 2\theta$,$\sin 2\theta$,$\tan 2\theta$を求めなさい.

(3)自然数$n$について,$a_{n+1} \geqq a_n$,$b_{n+1} \geqq b_n$がそれぞれ成り立つ.

(i) $\displaystyle \log_{10}a_n \leqq \frac{1}{3}$を満たす$n$をすべて求めなさい.

(ii) $\displaystyle \log_{10}b_n \leqq \frac{1}{3}$を満たす$n$をすべて求めなさい.

(iii) $\log_{10}(a_nb_n) \leqq 1$を満たす$n$をすべて求めなさい.
帯広畜産大学 国立 帯広畜産大学 2014年 第2問
関数$f(x)$を$\displaystyle f(x)=-7+k \int_0^6 |x-u| \, du$と定義する.ただし,$k$は定数,$f(3)=-5$である.次の各問に答えなさい.

(1)$k$の値を求めなさい.
(2)$y=f(x)$のグラフの概形を図示しなさい.
(3)実数$s,\ t$が条件$0 \leqq s \leqq 20$,$0 \leqq t \leqq 20$を満たしながら動くとき,$xy$座標平面上の点
\[ \mathrm{P} \left( \frac{1}{2}s+\frac{1}{10}t,\ -\frac{1}{4}s-\frac{1}{5}t \right) \]
が動く領域$D$を求めなさい.
(4)不等式$y \geqq f(x)$の表す領域を$E$とするとき,領域$E$と領域$D$の共通部分の面積を求めなさい.
長岡技術科学大学 国立 長岡技術科学大学 2014年 第3問
平面上の原点を$\mathrm{O}(0,\ 0)$とし,点$\mathrm{A}(2,\ 0)$をとる.また,$\mathrm{O}$を中心とする半径$1$の円を$C$とする.$C$上の点$\mathrm{P}$に対して$\angle \mathrm{AOP}=\theta$,$\angle \mathrm{APO}=\phi$,$\mathrm{AP}=z$とおく.ただし,$0<\theta<\pi$とする.下の問いに答えなさい.

(1)正弦定理を用いて$z$を$\theta$と$\phi$で表しなさい.
(2)余弦定理を用いて$z^2$を$\theta$で表しなさい.
(3)$\displaystyle \frac{dz}{d\theta}$を$\phi$で表しなさい.
(4)$\displaystyle \frac{dz}{d\theta}$の最大値,およびその最大値を与える$\theta$の値を求めなさい.
長岡技術科学大学 国立 長岡技術科学大学 2014年 第4問
関数$\displaystyle f(x)=\frac{\log x}{x},\ x>0$を考える.下の問いに答えなさい.

(1)$f(x)$の最大値,およびその最大値を与える$x$の値を求めなさい.
(2)$(1)$の結果を利用して$e^3>3^e$であることを証明しなさい.ただし,$e$は自然対数の底である.
東京医科歯科大学 国立 東京医科歯科大学 2014年 第1問
自然数$n$に対し,$3$個の数字$1,\ 2,\ 3$から重複を許して$n$個並べたもの$(x_1,\ x_2,\ \cdots,\ x_n)$の全体の集合を$S_n$とおく.$S_n$の要素$(x_1,\ x_2,\ \cdots,\ x_n)$に対し,次の$2$つの条件を考える.

条件$\mathrm{C}_{12}$:$1 \leqq i<j \leqq n$である整数$i,\ j$の組で,$x_i=1$,$x_j=2$を満たすものが少なくとも$1$つ存在する.
条件$\mathrm{C}_{123}$:$1 \leqq i<j<k \leqq n$である整数$i,\ j,\ k$の組で,$x_i=1$,$x_j=2$,$x_k=3$を満たすものが少なくとも$1$つ存在する.
例えば,$S_4$の要素$(3,\ 1,\ 2,\ 2)$は条件$\mathrm{C}_{12}$を満たすが,条件$\mathrm{C}_{123}$は満たさない.
$S_n$の要素$(x_1,\ x_2,\ \cdots,\ x_n)$のうち,条件$\mathrm{C}_{12}$を満たさないものの個数を$f(n)$,条件$\mathrm{C}_{123}$を満たさないものの個数を$g(n)$とおく.このとき以下の各問いに答えよ.

(1)$f(4)$と$g(4)$を求めよ.
(2)$f(n)$を$n$を用いて表せ.
(3)$g(n+1)$を$g(n)$と$f(n)$を用いて表せ.
(4)$g(n)$を$n$を用いて表せ.
東京医科歯科大学 国立 東京医科歯科大学 2014年 第2問
$\displaystyle 0<\theta<\frac{\pi}{2}$を満たす実数$\theta$に対し,$xyz$空間内の$4$点$\mathrm{A}(\cos \theta,\ \cos \theta,\ \sin \theta)$,$\mathrm{B}(-\cos \theta,\ -\cos \theta,\ \sin \theta)$,$\mathrm{C}(\cos \theta,\ -\cos \theta,\ -\sin \theta)$,$\mathrm{D}(-\cos \theta,\ \cos \theta,\ -\sin \theta)$を頂点とする四面体の体積を$V(\theta)$,この四面体の$xz$平面による切り口の面積を$S(\theta)$とする.このとき以下の各問いに答えよ.

(1)$\displaystyle S \left( \frac{\pi}{6} \right),\ V \left( \frac{\pi}{6} \right)$をそれぞれ求めよ.

(2)$\displaystyle 0<\theta<\frac{\pi}{2}$における$S(\theta)$の最大値を求めよ.

(3)$\displaystyle 0<\theta<\frac{\pi}{2}$における$V(\theta)$の最大値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2014年 第3問
$a$を正の実数,$k$を自然数とし,$x>0$で定義される関数
\[ f(x)=\int_a^{ax} \frac{k+\sqrt[k]{u}}{ku} \, du \]
を考える.このとき以下の各問いに答えよ.

(1)$f(x)$の増減および凹凸を調べ,$y=f(x)$のグラフの概形をかけ.
(2)$y=f(x)$の$x=1$における接線の方程式を求めよ.
(3)$S$を正の実数とするとき,$f(p)=S$を満たす実数$p$がただ$1$つ存在することを示せ.
(4)$\displaystyle b=\frac{k}{k+\sqrt[k]{a}}$とおくとき,$(2)$の$S,\ p$について,次の不等式が成立することを示せ.
\[ 1+bS<p<e^{bS} \]
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。