タグ「不等号」の検索結果

145ページ目:全4604問中1441問~1450問を表示)
熊本大学 国立 熊本大学 2014年 第1問
空間内の$1$辺の長さ$1$の正四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.また,点$\mathrm{D}$を$\overrightarrow{\mathrm{OD}}=\overrightarrow{b}-\overrightarrow{a}$を満たす点,点$\mathrm{E}$を$\overrightarrow{\mathrm{OE}}=\overrightarrow{c}-\overrightarrow{a}$を満たす点とし,点$\mathrm{P}$を$\mathrm{OA}$の中点とする.以下の問いに答えよ.

(1)$0<t<1$に対し,$\mathrm{BD}$を$t:(1-t)$に内分する点を$\mathrm{R}$とし,$\mathrm{CE}$を$(1-t):t$に内分する点を$\mathrm{S}$とする.また,$\mathrm{OB}$と$\mathrm{PR}$の交点を$\mathrm{M}$とし,$\mathrm{OC}$と$\mathrm{PS}$の交点を$\mathrm{N}$とする.このとき,$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{ON}}$を,それぞれ$t$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\triangle \mathrm{OMN}$の面積を$t$を用いて表せ.
(3)$t$が$0<t<1$の範囲を動くとき,$\triangle \mathrm{OMN}$の面積の最小値を求めよ.
熊本大学 国立 熊本大学 2014年 第4問
$1$次関数$f_n(x)=a_nx+b_n (n=1,\ 2,\ 3,\ \cdots)$は以下の$2$つの条件を満たすとする.

(i) $f_1(x)=x$
(ii) $f_{n+1}(x)$は整式$\displaystyle P_n(x)=\int_1^x 6tf_n(t) \, dt$を$x^2+x$で割ったときの余りに等しい.

以下の問いに答えよ.

(1)$n \geqq 1$のとき,$a_{n+1}$,$b_{n+1}$を$a_n,\ b_n$を用いて表せ.
(2)$n \geqq 2$のとき,$|a_n|$と$|b_n|$は偶数であることを示せ.
(3)$n \geqq 2$のとき,$|a_n|$と$|b_n|$は$3$の倍数ではないことを示せ.
新潟大学 国立 新潟大学 2014年 第1問
$a$を$a \geqq 0$となる実数とし,$\theta$の関数$f(\theta)$を
\[ f(\theta)=2 \sin 2\theta+4a(\cos \theta-\sin \theta)+1 \]
とする.このとき,次の問いに答えよ.

(1)$t=\cos \theta-\sin \theta$とおく.このとき,$f(\theta)$を$a,\ t$を用いて表せ.
(2)$0 \leqq \theta \leqq \pi$のとき,$t$のとりうる値の範囲を求めよ.
(3)$0 \leqq \theta \leqq \pi$のとき,$f(\theta)$の最大値と最小値を$a$を用いて表せ.
新潟大学 国立 新潟大学 2014年 第4問
関数$f(x)=(-4x^2+2)e^{-x^2}$について,次の問いに答えよ.

(1)$f(x)$の極値を求めよ.
(2)$a$を$a \geqq 0$となる実数とし,$\displaystyle I(a)=\int_0^a e^{-x^2} \, dx$とする.このとき,定積分$\displaystyle \int_0^a x^2e^{-x^2} \, dx$を$a,\ I(a)$を用いて表せ.
(3)曲線$y=f(x)$,$x$軸,$y$軸および直線$x=5$で囲まれる部分の面積を求めよ.
新潟大学 国立 新潟大学 2014年 第5問
自然数$n$に対して,$\displaystyle a_n=\int_0^1 \frac{x^2+(-x^2)^{n+1}}{1+x^2} \, dx$とおく.このとき,次の問いに答えよ.

(1)自然数$n$に対して,不等式
\[ |\int_0^1 \displaystyle\frac{x^2|{1+x^2} \, dx-a_n} \leqq \frac{1}{2n+3} \]
が成り立つことを示せ.

(2)定積分$\displaystyle \int_0^1 \frac{x^2}{1+x^2} \, dx$を求めよ.

(3)自然数$n$に対して,$\displaystyle a_n=\sum_{k=1}^n \frac{(-1)^{k+1}}{2k+1}$となることを示せ.

(4)極限値$\displaystyle \lim_{n \to \infty} \sum_{k=1}^n \frac{(-1)^{k+1}}{2k+1}$を求めよ.
新潟大学 国立 新潟大学 2014年 第1問
$a$を$a \geqq 0$となる実数とし,$\theta$の関数$f(\theta)$を
\[ f(\theta)=2 \sin 2\theta+4a(\cos \theta-\sin \theta)+1 \]
とする.このとき,次の問いに答えよ.

(1)$t=\cos \theta-\sin \theta$とおく.このとき,$f(\theta)$を$a,\ t$を用いて表せ.
(2)$0 \leqq \theta \leqq \pi$のとき,$t$のとりうる値の範囲を求めよ.
(3)$0 \leqq \theta \leqq \pi$のとき,$f(\theta)$の最大値と最小値を$a$を用いて表せ.
金沢大学 国立 金沢大学 2014年 第2問
関数$\displaystyle y=\frac{1}{e^x+e^{-x}}$のグラフ$C$について,次の問いに答えよ.

(1)$C$の変曲点のうち,$x$座標が最大となる点$\mathrm{P}$の$x$座標を求めよ.
(2)$(1)$で求めた$\mathrm{P}$の$x$座標を$b$とするとき,
\[ \tan \theta=e^b \]
をみたす$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$に対し,$\tan 2\theta$および$\theta$の値を求めよ.
(3)上の$b$に対する直線$x=b$と$x$軸,$y$軸および$C$で囲まれた図形の面積を求めよ.
金沢大学 国立 金沢大学 2014年 第3問
行列
\[ P=\left( \begin{array}{cc}
x & \displaystyle\frac{\sqrt{2}}{3} \\
\displaystyle\frac{\sqrt{2}}{3} & y
\end{array} \right) \]
について,次の問いに答えよ.

(1)$P^2=P$をみたす実数の組$(x,\ y)$は$2$組ある.これらを求めよ.
(2)$(1)$で求めた$2$つの組を$(x_1,\ y_1)$,$(x_2,\ y_2)$とし,それぞれに対応する行列$P$を$P_1$,$P_2$とおく.ただし,$x_1<x_2$とする.このとき,$n=1,\ 2,\ 3,\ \cdots$に対し
\[ (P_1P_2)^nP_1=r_nP_1 \]
をみたす実数$r_n$を求めよ.
(3)重複を許して$P_1$,$P_2$を$6$個並べて得られる順列
\[ Q_1 \quad Q_2 \quad Q_3 \quad Q_4 \quad Q_5 \quad Q_6 \]
のうちで$Q_1=P_1$となるものすべてを考え,それぞれの順列に$6$個の行列の積$P_1 Q_2 Q_3 Q_4 Q_5 Q_6$を対応させる.このようにして得られる行列のうち,異なるものはいくつあるか.
金沢大学 国立 金沢大学 2014年 第1問
放物線$C:y=x^2+2x$上の$2$点$(a,\ a^2+2a)$,$(b,\ b^2+2b)$における接線をそれぞれ$\ell_a$,$\ell_b$とするとき,次の問いに答えよ.ただし,$a<b$とする.

(1)$2$直線$\ell_a,\ \ell_b$の方程式を求めよ.また,$\ell_a$と$\ell_b$の交点の$x$座標を求めよ.
(2)放物線$C$と$2$直線$\ell_a,\ \ell_b$とで囲まれた図形の面積$S$を求めよ.
(3)$2$直線$\ell_a,\ \ell_b$が垂直に交わるように$a,\ b$が動くとき,$a,\ b$がみたす関係式を求めよ.また,そのときの面積$S$の最小値とそれを与える$a,\ b$の値を求めよ.
信州大学 国立 信州大学 2014年 第2問
実数$a,\ b$は,$-1<x<1$に対して$-3<x^2-2ax+b<5$を満たすものとする.ただし,$a>0$とする.このとき,次の問に答えよ.

(1)点$(a,\ b)$が表す領域を図示せよ.
(2)座標平面上で,直線$x=0$,直線$x=1$,直線$y=-3$,曲線$y=x^2-2ax+b$で囲まれる図形の面積$S$を$a,\ b$を用いて表せ.
(3)$(2)$の$S$の取りうる値の範囲を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。