タグ「不等号」の検索結果

143ページ目:全4604問中1421問~1430問を表示)
岡山大学 国立 岡山大学 2014年 第1問
数列$\{a_n\}$が
\[ \left\{ \begin{array}{l}
a_1=1 \\
a_{n+1}-a_n=a_n(5-a_{n+1}) \qquad (n=1,\ 2,\ 3,\ \cdots)
\end{array} \right. \]
を満たしているとき,以下の問いに答えよ.

(1)$n$に関する数学的帰納法で,$a_n>0$であることを証明せよ.

(2)$\displaystyle b_n=\frac{1}{a_n}$とおくとき,$b_{n+1}$を$b_n$を用いて表せ.

(3)$a_n$を求めよ.
岡山大学 国立 岡山大学 2014年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{AB}$の中点を$\mathrm{P}$,$\mathrm{PC}$の中点を$\mathrm{Q}$,$\mathrm{OQ}$を$m:n$に内分する点を$\mathrm{R}$とする.ただし,$m>0$,$n>0$とする.さらに直線$\mathrm{AR}$が平面$\mathrm{OBC}$と交わる点を$\mathrm{S}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおいて以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OR}}$,$\overrightarrow{\mathrm{OS}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$m$,$n$を用いて表せ.
(3)$\displaystyle \frac{\mathrm{AR}}{\mathrm{RS}}$を$m,\ n$を用いて表せ.
岡山大学 国立 岡山大学 2014年 第3問
関数$f(x)$を
\[ f(x)=[x]+2(x-[x])-(x-[x])^2 \]
と定める.ここで,$[x]$は$n \leqq x$を満たす最大の整数$n$を表す.

(1)$f(x) \geqq x$であることを示せ.
(2)$f(x+1)=f(x)+1$であることを示せ.
(3)$0 \leqq x \leqq 2$において,$y=f(x)$のグラフを描け.
(4)$0 \leqq a<1$とするとき,$\displaystyle \int_a^{a+1} f(x) \, dx$を求めよ.
東北大学 国立 東北大学 2014年 第1問
$\displaystyle x=t+\frac{1}{3t} \left( 0<t \leqq \frac{1}{2} \right)$とする.

(1)$x$のとり得る値の範囲を求めよ.
(2)$x$の方程式$x^2+ax+b=0$が$(1)$の範囲に少なくとも$1$つの解をもつような点$(a,\ b)$の存在範囲を図示せよ.
東北大学 国立 東北大学 2014年 第4問
不等式$1 \leqq x^2+y^2 \leqq 4$が表す$xy$平面内の領域を$D$とする.$\mathrm{P}$を円$x^2+y^2=1$上の点,$\mathrm{Q}$と$\mathrm{R}$を円$x^2+y^2=4$上の異なる$2$点とし,三角形$\mathrm{PQR}$は領域$D$に含まれているとする.$a,\ b$を実数とし,行列$A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right)$の表す$1$次変換により$\mathrm{P}$は$\mathrm{P}^\prime$,$\mathrm{Q}$は$\mathrm{Q}^\prime$,$\mathrm{R}$は$\mathrm{R}^\prime$に移されるとする.このとき,三角形$\mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$が領域$D$に含まれるための$a,\ b$の必要十分条件を求めよ.ただし,三角形は内部も含めて考えるものとする.
東北大学 国立 東北大学 2014年 第6問
以下の問いに答えよ.

(1)$n$を自然数,$a$を正の定数として,
\[ f(x)=(n+1) \{ \log (a+x)-\log (n+1) \}-n(\log a-\log n)-\log x \]
とおく.$x>0$における関数$f(x)$の極値を求めよ.ただし,対数は自然対数とする.
(2)$n$が$2$以上の自然数のとき,次の不等式が成り立つことを示せ.
\[ \frac{1}{n} \sum_{k=1}^n \frac{k+1}{k}>(n+1)^{\frac{1}{n}} \]
筑波大学 国立 筑波大学 2014年 第3問
関数$f(x)=e^{-\frac{x^2}{2}}$を$x>0$で考える.$y=f(x)$のグラフの点$(a,\ f(a))$における接線を$\ell_a$とし,$\ell_a$と$y$軸との交点を$(0,\ Y(a))$とする.以下の問いに答えよ.ただし,実数$k$に対して$\displaystyle \lim_{t \to \infty}t^ke^{-t}=0$であることは証明なしで用いてよい.

(1)$Y(a)$がとりうる値の範囲を求めよ.
(2)$0<a<b$である$a,\ b$に対して,$\ell_a$と$\ell_b$が$x$軸上で交わるとき,$a$のとりうる値の範囲を求め,$b$を$a$で表せ.
(3)$(2)$の$a,\ b$に対して,$Z(a)=Y(a)-Y(b)$とおく.$\displaystyle \lim_{a \to +0}Z(a)$および$\displaystyle \lim_{a \to +0} \frac{Z^\prime(a)}{a}$を求めよ.
筑波大学 国立 筑波大学 2014年 第6問
$xy$平面上に楕円
\[ C_1:\frac{x^2}{a^2}+\frac{y^2}{9}=1 \quad (a>\sqrt{13}) \]
および双曲線
\[ C_2:\frac{x^2}{4}-\frac{y^2}{b^2}=1 \quad (b>0) \]
があり,$C_1$と$C_2$は同一の焦点をもつとする.また$C_1$と$C_2$の交点
\[ \mathrm{P} \left( 2 \sqrt{1+\frac{t^2}{b^2}},\ t \right) \quad (t>0) \]
における$C_1$,$C_2$の接線をそれぞれ$\ell_1$,$\ell_2$とする.

(1)$a$と$b$の間に成り立つ関係式を求め,点$\mathrm{P}$の座標を$a$を用いて表せ.
(2)$\ell_1$と$\ell_2$が直交することを示せ.
(3)$a$が$a>\sqrt{13}$を満たしながら動くときの点$\mathrm{P}$の軌跡を図示せよ.
筑波大学 国立 筑波大学 2014年 第2問
$xy$平面上の曲線$C:y=x \sin x+\cos x-1 (0<x<\pi)$に対して,以下の問いに答えよ.ただし$\displaystyle 3<\pi<\frac{16}{5}$であることは証明なしで用いてよい.

(1)曲線$C$と$x$軸の交点はただ$1$つであることを示せ.
(2)曲線$C$と$x$軸の交点を$\mathrm{A}(\alpha,\ 0)$とする.$\displaystyle \alpha>\frac{2}{3}\pi$であることを示せ.
(3)曲線$C$,$y$軸および直線$\displaystyle y=\frac{\pi}{2}-1$で囲まれる部分の面積を$S$とする.また,$xy$平面の原点$\mathrm{O}$,点$\mathrm{A}$および曲線$C$上の点$\displaystyle \mathrm{B} \left( \frac{\pi}{2},\ \frac{\pi}{2}-1 \right)$を頂点とする三角形$\mathrm{OAB}$の面積を$T$とする.$S<T$であることを示せ.
筑波大学 国立 筑波大学 2014年 第4問
平面上の直線$\ell$に同じ側で接する$2$つの円$C_1$,$C_2$があり,$C_1$と$C_2$も互いに外接している.$\ell$,$C_1$,$C_2$で囲まれた領域内に,これら$3$つと互いに接する円$C_3$を作る.同様に$\ell$,$C_n$,$C_{n+1} (n=1,\ 2,\ 3,\ \cdots)$で囲まれた領域内にあり,これら$3$つと互いに接する円を$C_{n+2}$とする.円$C_n$の半径を$r_n$とし,$\displaystyle x_n=\frac{1}{\sqrt{r_n}}$とおく.このとき,以下の問いに答えよ.ただし,$r_1=16$,$r_2=9$とする.

(1)$\ell$が$C_1$,$C_2$,$C_3$と接する点を,それぞれ$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$とおく.線分$\mathrm{A}_1 \mathrm{A}_2$,$\mathrm{A}_1 \mathrm{A}_3$,$\mathrm{A}_2 \mathrm{A}_3$の長さおよび$r_3$の値を求めよ.
(2)ある定数$a,\ b$に対して$x_{n+2}=ax_{n+1}+bx_n (n=1,\ 2,\ 3,\ \cdots)$となることを示せ.$a,\ b$の値も求めよ.
(3)$(2)$で求めた$a,\ b$に対して,$2$次方程式$t^2=at+b$の解を$\alpha,\ \beta (\alpha>\beta)$とする.$x_1=c \alpha^2+d \beta^2$を満たす有理数$c,\ d$の値を求めよ.ただし,$\sqrt{5}$が無理数であることは証明なしで用いてよい.
(4)$(3)$の$c,\ d,\ \alpha,\ \beta$に対して,
\[ x_n=c \alpha^{n+1}+d \beta^{n+1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
となることを示し,数列$\{r_n\}$の一般項を$\alpha,\ \beta$を用いて表せ.
(図は省略)
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。