タグ「不等号」の検索結果

138ページ目:全4604問中1371問~1380問を表示)
東京大学 国立 東京大学 2014年 第2問
$a$を自然数(すなわち$1$以上の整数)の定数とする.白球と赤球があわせて$1$個以上入っている袋$\mathrm{U}$に対して,次の操作$(*)$を考える.

\mon[$(*)$] 袋$\mathrm{U}$から球を$1$個取り出し,

(i) 取り出した球が白球のときは,袋$\mathrm{U}$の中身が白球$a$個,赤球$1$個となるようにする.
(ii) 取り出した球が赤球のときは,その球を袋$\mathrm{U}$へ戻すことなく,袋$\mathrm{U}$の中身はそのままにする.



はじめに袋$\mathrm{U}$の中に,白球が$a+2$個,赤球が$1$個入っているとする.この袋$\mathrm{U}$に対して操作$(*)$を繰り返し行う.
たとえば,$1$回目の操作で白球が出たとすると,袋$\mathrm{U}$の中身は白球$a$個,赤球$1$個となり,さらに$2$回目の操作で赤球が出たとすると,袋$\mathrm{U}$の中身は白球$a$個のみとなる.
$n$回目に取り出した球が赤球である確率を$p_n$とする.ただし,袋$\mathrm{U}$の中の個々の球の取り出される確率は等しいものとする.

(1)$p_1,\ p_2$を求めよ.
(2)$n \geqq 3$に対して$p_n$を求めよ.
横浜国立大学 国立 横浜国立大学 2014年 第3問
$r$を$0<r<1$をみたす定数とする.数列$\{a_n\}$に対して
\[ S_n=\sum_{k=1}^{n} (-1)^{k-1}r^{a_k} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とする.次の問いに答えよ.ただし以下では,実数$x$に対して,$[x]$は$l \leqq x<l+1$をみたす整数$l$を表す.

(1)数列$\{a_n\}$を$\displaystyle a_n=\left[ \frac{n}{2} \right]$で定めるとき,$S_{2n}$を$r$と$n$の式で表せ.
(2)数列$\{a_n\}$を$\displaystyle a_n=\left[ \frac{n}{3} \right]$で定めるとき,$S_{3n}$を$r$と$n$の式で表せ.
(3)$a_1=0$,$a_n \leqq a_{n+1} \leqq a_n+1 (n=1,\ 2,\ 3,\ \cdots)$および$S_{2014}=0$をみたす数列$\{a_n\}$のうち,$\displaystyle \sum_{k=1}^{2014} r^{a_k}$を最小にする数列$\{a_n\}$の第$2014$項を求め,そのときの最小値を$r$の式で表せ.
静岡大学 国立 静岡大学 2014年 第3問
$p$を$\displaystyle 0<p<\frac{1}{6}$を満たす実数とする.次のように数列$\{a_n\}$を帰納的に定義する.$a_1=0$とし,第$n$項$a_n$を用いた関数
\[ f_n(x)=2x^3-3px^2+6a_nx-1 \]
が極大値と極小値をもつならば,第$n+1$項$a_{n+1}$を$f_n(x)$の極大値と極小値の和により定める.そうでないならば,$a_{n+1}=0$と定める.このとき,次の問いに答えよ.

(1)$f_1(x)$が極大値と極小値をもつことを示し,$a_2$を$p$を用いて表せ.
(2)$k$を自然数とする.関数$f_k(x)$が極大値と極小値をもつならば,関数$f_{k+1}(x)$も極大値と極小値をもつことを示せ.
(3)$a_{n+1}$と$a_n$の関係式を$p$を用いて表せ.
(4)一般項$a_n$を$p$を用いて表せ.
京都大学 国立 京都大学 2014年 第4問
実数の定数$a,\ b$に対して,関数$f(x)$を
\[ f(x)=\frac{ax+b}{x^2+x+1} \]
で定める.すべての実数$x$で不等式
\[ f(x) \leqq f(x)^3-2f(x)^2+2 \]
が成り立つような点$(a,\ b)$の範囲を図示せよ.
京都大学 国立 京都大学 2014年 第1問
$0^\circ \leqq \theta<90^\circ$とする.$x$についての$4$次方程式
\[ \{x^2-2(\cos \theta)x-\cos \theta+1\}\{ x^2+2(\tan \theta)x+3\}=0 \]
は虚数解を少なくとも$1$つ持つことを示せ.
京都大学 国立 京都大学 2014年 第4問
次の式
\[ a_1=2,\quad a_{n+1}=2a_n-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められる数列$\{a_n\}$を考える.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)次の不等式
\[ {a_n}^2-2a_n>10^{15} \]
を満たす最小の自然数$n$を求めよ.ただし,$0.3010<\log_{10}2<0.3011$であることは用いてよい.
一橋大学 国立 一橋大学 2014年 第2問
$0<t<1$とし,放物線$C:y=x^2$上の点$(t,\ t^2)$における接線を$\ell$とする.$C$と$\ell$と$x$軸で囲まれる部分の面積を$S_1$とし,$C$と$\ell$と直線$x=1$で囲まれる部分の面積を$S_2$とする.$S_1+S_2$の最小値を求めよ.
一橋大学 国立 一橋大学 2014年 第5問
数直線上の点$\mathrm{P}$を次の規則で移動させる.一枚の硬貨を投げて,表が出れば$\mathrm{P}$を$+1$だけ移動させ,裏が出れば$\mathrm{P}$を原点に関して対称な点に移動させる.$\mathrm{P}$は初め原点にあるとし,硬貨を$n$回投げた後の$\mathrm{P}$の座標を$a_n$とする.

(1)$a_3=0$となる確率を求めよ.
(2)$a_4=1$となる確率を求めよ.
(3)$n \geqq 3$のとき,$a_n=n-3$となる確率を$n$を用いて表せ.
静岡大学 国立 静岡大学 2014年 第4問
$\alpha$を実数とする.$2$つの関数$f(x)=e^{-x}(\sin x-\cos x)$と$g(x)=\alpha e^{-x}$について,次の問いに答えよ.

(1)$\displaystyle \int f(x) \, dx=-e^{-x} \sin x+C$であることを示せ.ただし,$C$は積分定数である.
(2)すべての$x \geqq 0$について$f(x) \leqq g(x)$が成り立つような$\alpha$の値の最小値を求めよ.
(3)$\alpha$を$(2)$で求めた最小値とする.曲線$y=f(x) (x \geqq 0)$と曲線$y=g(x) (x \geqq 0)$との共有点の$x$座標を小さい方から順に$a_0,\ a_1,\ a_2,\ \cdots$とし,$n$が自然数であるとき,
\[ S_n=\int_{a_{n-1}}^{a_n} \left\{ g(x)-\frac{|f(x)|+f(x)}{2} \right\} \, dx \]
とする.このとき,$S_n$を求めよ.
(4)$(3)$で求めた$S_n$について,無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和を求めよ.
静岡大学 国立 静岡大学 2014年 第2問
$n$を$3$以上の自然数とし,$k$を$4$以上の自然数とする.$1$から$n$までの番号の札が$1$枚ずつ計$n$枚ある.この中から$1$枚の札を引き,番号を記録してからもとに戻す操作をする.この試行を$k$回くり返す.$i$回目($1 \leqq i \leqq k$)に引いた札の番号を$X_i$とするとき,次の問いに答えよ.

(1)$X_1,\ X_2,\ \cdots,\ X_k$がすべて異なる番号である確率を求めよ.
(2)$X_1,\ X_2,\ \cdots,\ X_k$のうち,ちょうど$k-1$個が同じ番号である確率を求めよ.
(3)自然数$l$が$2 \leqq l \leqq k-2$を満たすとき,$X_1,\ X_2,\ \cdots,\ X_k$のうち,ちょうど$l$個が同じ番号で,残りの$k-l$個がすべて異なる番号である確率を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。