タグ「不等号」の検索結果

128ページ目:全4604問中1271問~1280問を表示)
沖縄国際大学 私立 沖縄国際大学 2015年 第3問
以下の各問いに答えなさい.

(1)次の関数のグラフを$x$軸方向に$-2$,$y$軸方向に$4$だけ平行移動したグラフの方程式を求めよ.
\[ y=x^2-4x+12 \]
(2)実数$x,\ y$について$4$次関数$y=(x^2+4x)^2+4x^2+16x+5$において,$-3 \leqq x \leqq 1$における最大値,最小値を求めよ.
(3)菱形の凧を作成したい.使用できる凧の骨が$14 \, \mathrm{cm}$で,凧の骨は対角線に配置する.このとき,凧の大きさ(面積)の最大値を求めよ.また,周の長さの最小値も求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第4問
下図のように太陽が雲間から見えた.観察された太陽を半径$r$の円と仮定し,図のように見えた太陽の円周上の$2$点を$\mathrm{A}$,$\mathrm{B}$とし,線分$\mathrm{AB}$の中点を$\mathrm{C}$,円周上に一点$\mathrm{D}$を線分$\mathrm{CD}$と$\mathrm{AB}$が互いに直交するようにとる.$\mathrm{AB}=a$,$\mathrm{CD}=c$とおくとき,$r$と$a,\ c$の関係を式で表わすと$[$8$]$となる.このとき$r$の最小値を$c$を用いて表わすと,$[$9$]$である.また$c<r$の場合,観察された太陽の中心を$\mathrm{O}$とする.この円を$\mathrm{OD}$を通る直径を軸に回転させてできる球において$\mathrm{AB}$を通り$\mathrm{OD}$に垂直な平面で$2$つの図形に分けたとき,点$\mathrm{D}$を含む部分の体積を$a,\ c$を用いて表すと$[$10$]$である.
(図は省略)
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第5問
$n=1,\ 2,\ 3,\ \cdots$に対して,関数$F_n(x)$を
\[ F_1(x)=\frac{1}{1+x},\quad F_{n+1}(x)=\frac{1}{1+F_n(x)} \]
で定義する.

(1)$F_3(x)$を求めると,$[$11$]$である.次に$n=1,\ 2,\ 3,\ \cdots$に対して,数列$\{p_n\}$を
\[ p_1=1,\quad p_2=1,\quad p_{n+2}=p_{n+1}+p_n \]
で定義する.
(2)$\displaystyle F_n(x)=\frac{a_n+b_n x}{c_n+d_n x}$で与えられるとき,$n \geqq 2$に対して$a_n,\ b_n,\ c_n,\ d_n$を数列$\{p_n\}$を用いて表すと$(a_n,\ b_n,\ c_n,\ d_n)=[$12$]$である.
(3)$\displaystyle \lim_{n \to \infty} \frac{p_{n+1}}{p_n}$が存在することを用いて$\displaystyle \lim_{n \to \infty}F_n(0)$の値を求めると$[$13$]$である.
沖縄国際大学 私立 沖縄国際大学 2015年 第1問
以下の各問いに答えなさい.

(1)以下の不等式を解きなさい.

(i) $-x<6$
(ii) $-3x+1<x<5x-8$

(2)$(x-3)(x+3)(x^2+9)(x^4+81)$を展開しなさい.
(3)以下の数を有理数,無理数,整数,自然数,実数に分類し解答欄に記入しなさい.
\[ 0.5 \qquad \sqrt{2} \qquad 4 \qquad -18 \qquad 0 \qquad 0.\dot{3} \]
解答欄

\begin{tabular}{|p{22mm}|p{22mm}|p{22mm}|p{22mm}|p{22mm}|}
\hline
有理数 & 無理数 & 整数 & 自然数 & 実数 \\ \hline
& $\phantom{\displaystyle\frac{[ ]}{[ ]}}$ & & & \\ \hline
\end{tabular}
沖縄国際大学 私立 沖縄国際大学 2015年 第3問
以下の各問に答えなさい.

(1)次の関数のグラフを$x$軸方向に$\displaystyle -\frac{1}{3}$,$y$軸方向に$\displaystyle -\frac{1}{3}$だけ平行移動したグラフの方程式を求めよ.
\[ y=-3x^2+2x-1 \]
(2)関数$f(x)=x^2-12x+c$が$2 \leqq x \leqq 9$において最大値が$12$になるように,定数$c$の値を求めよ.
(3)縦横$13$本の線を持つ碁盤($13$路盤)がある.各線によって構成される枠の大きさはすべて等しく,$1$辺が$1 \, \mathrm{cm}$である.ここで,$4$つの角を左上から反時計回りに$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とした場合,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$上にそれぞれ$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$の場所に碁石を配置した.ただし,$\mathrm{AE}=x$,$\mathrm{BF}=2x$,$\mathrm{CG}=x+6 (0<x<6)$であるようにする.このとき,三角形$\mathrm{EFG}$の面積が最小になる場合の$x$の値と,その面積を求めよ.
(図は省略)
沖縄国際大学 私立 沖縄国際大学 2015年 第1問
以下の各問いに答えなさい.

(1)次の式を展開しなさい.

(i) $(x-1)(x-2)(x+2)(x+1)$
(ii) $(x+3)^2(x-3)^2$

(2)$m+n=1$となる整数$m$と自然数$n$の組み合わせを次の$\zenkakkoa$~$\zenkakkoki$からすべて選びなさい.
$\zenkakkoa m=1,\ n=0$ \qquad $\zenkakkoi m=0,\ n=1$ \qquad $\zenkakkou m=3,\ n=-2$
$\displaystyle \zenkakkoe m=-0.5,\ n=1.5$ \qquad $\displaystyle \zenkakkoo m=\frac{3}{5},\ n=\frac{2}{5}$ \qquad $\zenkakkoka m=-\sqrt{1},\ n=\sqrt{4}$
$\zenkakkoki m=-5,\ n=6$

(3)$\displaystyle -\frac{4x-1}{3} \leqq x+1$を解きなさい.

(4)$|x+6|>3x$を解きなさい.
首都大学東京 公立 首都大学東京 2015年 第1問
以下の問いに答えなさい.

(1)次の不定積分を求めなさい.
\[ \int e^{-2x} \cos 2x \, dx \]
(2)$n$を正の整数とする.曲線
\[ y=e^{-x} \sin x \quad ((n-1) \pi \leqq x \leqq n\pi) \]
と$x$軸で囲まれる部分を$x$軸の周りに$1$回転させてできる立体の体積$V_n$を求めなさい.
(3)$(2)$で求めた$V_n$に対して,$\displaystyle \sum_{n=1}^\infty V_{2n-1}=V_1+V_3+V_5+\cdots$を求めなさい.
首都大学東京 公立 首都大学東京 2015年 第2問
関数
\[ f(x)=\sqrt{2} \sin x-\sqrt{2} \cos x-\sin 2x \]
に対して,以下の問いに答えなさい.

(1)$\displaystyle t=\cos \left( x+\frac{\pi}{4} \right)$とおくとき,$f(x)$を$t$の式で表しなさい.
(2)$f(x)$の最大値と最小値を求めなさい.
(3)方程式$f(x)=a$が$0 \leqq x<2\pi$の範囲で相異なる$2$つの解をもつための実数$a$の条件を求めなさい.
大阪市立大学 公立 大阪市立大学 2015年 第3問
$m>0$とする.座標平面上の点$\mathrm{P}$に対して,$\mathrm{P}$を通る傾き$m$の直線と$y$軸の交点を$\mathrm{R}$とし,点$\mathrm{Q}$を$\overrightarrow{\mathrm{RQ}}=m \overrightarrow{\mathrm{RP}}$となるように定める.次の問いに答えよ.

(1)$\mathrm{P}$の座標を$(a,\ b)$とするとき,$\mathrm{Q}$の座標を$m,\ a,\ b$を用いて表せ.
(2)点$\mathrm{P}$が放物線$y=x^2-x$上を動くとき,対応する点$\mathrm{Q}$の軌跡を$C$とする.$C$の方程式を$y=f(x)$とするとき,$f(x)$を求めよ.
(3)$(2)$の$f(x)$に対し,$\displaystyle I(m)=\int_0^m f(x) \, dx$とする.$m$を$m>0$の範囲で変化させるとき,$I(m)$を最小にする$m$の値を求めよ.
大阪市立大学 公立 大阪市立大学 2015年 第4問
$1$枚の硬貨を何回も投げ,表が$2$回続けて出たら終了する試行を行う.ちょうど$n$回投げた時点で終了する確率を$P_n$とするとき,次の問いに答えよ.

(1)$P_2$を求めよ.
(2)$P_3$を求めよ.
(3)$P_4$を求めよ.
(4)$\displaystyle P_5<\frac{1}{2}$であることを示せ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。