タグ「不等号」の検索結果

120ページ目:全4604問中1191問~1200問を表示)
九州産業大学 私立 九州産業大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1+\sqrt{13}}{2}$とするとき,$x^2-x=[ア]$,$x^3-4x+10=[イウ]$である.
(2)不等式$x^2+2x \leqq -x \leqq -x^2-2x+2$の解は$[エオ] \leqq x \leqq [カ]$である.
(3)$m$を定数とする.放物線$C:y=x^2-2mx+9$について,

(i) 放物線$C$が$x$軸に接するとき,$m=\pm [キ]$である.
(ii) 放物線$C$が$x$軸と異なる$2$点で交わり,$x$軸から切り取る線分の長さが$8$であるとき,$m=\pm [ク]$である.
(iii) 放物線$C$が$x$軸の負の部分と異なる$2$点で交わるような定数$m$の値の範囲は$m<[ケコ]$である.

(4)$5$人が$1$回じゃんけんを行うとき,

(i) $1$人が勝ち,$4$人が負ける確率は$\displaystyle \frac{[サ]}{[シス]}$である.

(ii) $2$人が勝ち,$3$人が負ける確率は$\displaystyle \frac{[セソ]}{[タチ]}$である.

(iii) 誰も勝たない,すなわち,あいこになる確率は$\displaystyle \frac{[ツテ]}{[トナ]}$である.
九州産業大学 私立 九州産業大学 2015年 第5問
$\displaystyle 0<x \leqq \frac{1}{2}\pi$のとき,関数$f(x)=\{1+\log (\sin x)\} \cos x$,曲線$L:y=f(x)$について考える.

(1)$f(x)=0$のとき$\sin x$の値は$[ア]$と$[イ]$である.
(2)関数$f(x)$の導関数$f^\prime(x)=[ウ]$である.
(3)不定積分$\displaystyle \int f(x) \, dx=[エ]+C$である.ここで$C$は積分定数とする.
(4)曲線$L$と$x$軸で囲まれた部分の面積は$[オ]$である.
昭和大学 私立 昭和大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=x$,$\mathrm{BC}=4$,$\mathrm{CA}=6-x$とする.ただし,$1<x<5$である.

(1)$\angle \mathrm{ABC}={60}^\circ$のとき,$x$の値を求めよ.
(2)$\angle \mathrm{ABC}={60}^\circ$のとき,$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
(3)$\angle \mathrm{ABC}=\theta$とするとき,$\cos \theta$の値を$x$で表せ.
(4)$\angle \mathrm{ABC}=\theta$とするとき,$\sin \theta$の値を$x$で表せ.
(5)$\triangle \mathrm{ABC}$の面積の最大値とそのときの$x$の値を求めよ.
昭和大学 私立 昭和大学 2015年 第5問
関数$\displaystyle y=\sin 2x+2 \sqrt{2} \sin \left( x+\frac{\pi}{4} \right)+\frac{5}{4}$および$u=\sin x+\cos x$について以下の各問いに答えよ.

(1)$0 \leqq x<2\pi$のとき,関数$u$のとりうる値の範囲を求めよ.
(2)$y$を$u$で表せ.
(3)$y$のとりうる値の最大値と最小値を求めよ.
昭和大学 私立 昭和大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=x$,$\mathrm{BC}=4$,$\mathrm{CA}=6-x$とする.ただし,$1<x<5$である.

(1)$\angle \mathrm{ABC}={60}^\circ$のとき,$x$の値を求めよ.
(2)$\angle \mathrm{ABC}={60}^\circ$のとき,$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
(3)$\angle \mathrm{ABC}=\theta$とするとき,$\cos \theta$の値を$x$で表せ.
(4)$\angle \mathrm{ABC}=\theta$とするとき,$\sin \theta$の値を$x$で表せ.
(5)$\triangle \mathrm{ABC}$の面積の最大値とそのときの$x$の値を求めよ.
昭和大学 私立 昭和大学 2015年 第4問
$1$から$7$までの番号を$1$つずつ書いた$7$枚のカードが袋の中に入っている.無作為に同時に$3$枚のカードを取り出し,その番号を$x,\ y,\ z$(ただし$x<y<z$)とおく.

(1)$3$つの番号の積$xyz$が$5$の倍数になる確率を求めよ.
(2)$3$つの番号の積$xyz$が奇数になる確率を求めよ.
(3)$x=3$となる確率を求めよ.
(4)$z \geqq 5$となる確率を求めよ.
昭和大学 私立 昭和大学 2015年 第4問
一辺の長さが$2$の正三角形$\mathrm{ABC}$の$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の中点をそれぞれ$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.$0<a<1$として,線分$\mathrm{AD}$を$(1-a):a$に内分する点を$\mathrm{O}$,線分$\mathrm{CE}$を$a:(1-a)$に内分する点を$\mathrm{P}$とし,直線$\mathrm{OP}$と直線$\mathrm{EF}$の交点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{AD}}=\overrightarrow{x}$,$\overrightarrow{\mathrm{AF}}=\overrightarrow{y}$とするとき,以下の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{x},\ \overrightarrow{y},\ a$で表せ.
(2)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OP}},\ a$で表せ.
(3)$\overrightarrow{\mathrm{OP}},\ \overrightarrow{\mathrm{OB}}$のなす角を$\theta$とするとき,$\cos^2 \theta$を$a$で表せ.
(4)$\theta={45}^\circ$のときの$a$の値を求めよ.
昭和大学 私立 昭和大学 2015年 第5問
$x,\ y,\ z$を実数とするとき,次の$(1)$~$(6)$までの文中の空欄に当てはまるものを$(ア)$~$(エ)$から一つ選べ.

(1)$xyz=0$は$xy=0$の$[ ]$.
(2)$x+y+z=0$は$x+y=0$の$[ ]$.
(3)$x(y^2+1)=0$は$x=0$の$[ ]$.
(4)$x^2+y^2=0$は$|x-y|=x+y$の$[ ]$.
(5)$xy<0$は$|x+y|>x+y$の$[ ]$.
(6)$(x^2+y^2)(x^2+z^2)=0$は$x=0$の$[ ]$.


\mon[(ア)] 必要条件であるが十分条件でない
\mon[(イ)] 十分条件であるが必要条件でない
\mon[(ウ)] 必要十分条件である
\mon[(エ)] 必要条件でも十分条件でもない
昭和大学 私立 昭和大学 2015年 第1問
次の各問に答えよ.

(1)$x$の関数$f(x),\ g(x)$をそれぞれ$f(x)=-x^2+2x+2$,$g(x)=x^2+2x+a$とする.ただし,$a$は定数とする.
$(1$-$1)$ $g(x)<f(x)$を満たす実数$x$が区間$-2 \leqq x \leqq 2$に存在するような,定数$a$の値の範囲を求めよ.
$(1$-$2)$ $g(x_1)<f(x_2)$を満たす実数$x_1$および$x_2$が区間$-2 \leqq x \leqq 2$に存在するような,定数$a$の値の範囲を求めよ.
(2)白球$4$個と黒球$n$個が入った袋から同時に$2$個の球を取り出すとき,$2$個の球が同色である確率を$p_n$とする.ただし,球はすべて同じ確率で取り出されるものとする.
$(2$-$1)$ $n=3$のとき,$p_n$の値を求めよ.
$(2$-$2)$ $n \geqq 2$とする.このとき,$\displaystyle p_n \geqq \frac{1}{2}$となる整数$n$の最小値を求めよ.
(3)$0 \leqq x<2\pi$のとき,不等式$\sin x+\sqrt{3} \cos x \geqq \sqrt{2}$を解け.
(4)$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.$6^{100}$の桁数を求めよ.
昭和大学 私立 昭和大学 2015年 第2問
正の整数$a,\ b$の組$(a,\ b)$の全体を
\[ (1,\ 1),\ (1,\ 2),\ (2,\ 1),\ (1,\ 3),\ \cdots \]
のように$1$列に並べる.ここで,$2$つの組$(a_i,\ b_i) (i=1,\ 2)$について,$a_1+b_1<a_2+b_2$ならば$(a_1,\ b_1)$の方を先に並べ,また,$a_1+b_1=a_2+b_2$ならば,$a_1<a_2$のとき$(a_1,\ b_1)$の方を先に並べるものとする.次の各問に答えよ.なお,必要ならば公式
\[ \sum_{k=1}^n k^3=\left\{ \frac{1}{2}n(n+1) \right\}^2 \]
を使ってよい.

(1)組$(5,\ 5)$は初めから何番目にあるか.
(2)$m,\ n$を正の整数とする.組$(m,\ n)$は初めから何番目にあるか.
(3)初めから$200$番目にある組を求めよ.
(4)初めから$n$番目の組が$(a,\ b)$であるとき,$c_n=ab$とおく.和$c_1+\cdots +c_{200}$を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。