タグ「不等号」の検索結果

116ページ目:全4604問中1151問~1160問を表示)
大阪歯科大学 私立 大阪歯科大学 2015年 第2問
$a$が実数であるとき,$f(x)=x^2-ax+a-1$の$0 \leqq x \leqq 1$における最大値が$0$であるという.

(1)$a=0$のとき,このことが成り立つことを示せ.
(2)上の条件が成り立つための$a$の値をすべて求めよ.
(3)$a \leqq 0$のとき,$\displaystyle \int_a^{a+1} f(x) \, dx$の最大値とそのときの$a$の値を求めよ.
大阪歯科大学 私立 大阪歯科大学 2015年 第3問
$\triangle \mathrm{AOB}$の頂点$\mathrm{A}$から辺$\mathrm{OB}$に下ろした垂線の足を$\mathrm{H}$とする.$\mathrm{OA}=a$,$\mathrm{OB}=b$,$\mathrm{AB}=c$(ただし,$a<b$),$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,$\mathrm{OA}$上に点$\mathrm{D}$を,$\mathrm{OB}$上に点$\mathrm{E}$を$\displaystyle \mathrm{OD}=\mathrm{OE}=\frac{a}{4}$となるようにとる.以下の問に答えよ.

(1)$\cos (\angle \mathrm{AOB})$を$a,\ b,\ c$で表せ.
(2)$\overrightarrow{\mathrm{OF}}=\overrightarrow{\mathrm{OD}}+\overrightarrow{\mathrm{OE}}$となるように点$\mathrm{F}$をとる.$\mathrm{OF}$の延長と$\mathrm{AB}$の交点を$\mathrm{P}$とするとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を使って表せ.
(3)$\mathrm{OP}$と$\mathrm{AH}$の交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を使って表せ.
大阪薬科大学 私立 大阪薬科大学 2015年 第1問
次の問いに答えなさい.

(1)実数$a,\ b$に関する条件「$a>2$かつ$b \leqq 1$」の否定であるものを次のア~エのうちからひとつ選び,その記号を$[$\mathrm{A]$}$に書きなさい.ただし,該当するものがない場合は「該当なし」と書きなさい.

ア:「$a>2$または$b \leqq 1$」 \qquad イ:「$a \leqq 2$または$b>1$」
ウ:「$a<2$または$b \geqq 1$」 \qquad エ:「$a \leqq 2$かつ$b>1$」

(2)$x$についての整式$P(x)=x^3+kx^2+x+2$を$x-3$で割った余りが$k$となるような定数$k$の値は$k=[$\mathrm{B]$}$である.
(3)$\displaystyle 0<\alpha<\frac{\pi}{2}$で,$\tan \alpha=3$のとき,$\displaystyle \sin \left( 2 \alpha +\frac{\pi}{3} \right)$の値を$c$とすると,$c=[$\mathrm{C]$}$である.
(4)正の実数$x,\ y$が,$x^2+4y=1$を満たすとき,$2 \log_2 x+\log_2 y$のとり得る値の最大値を$d$とすると,$d=[$\mathrm{D]$}$である.
(5)$t$を実数とする.平面上のベクトル$\overrightarrow{a}$と$\overrightarrow{b}$が,$|\overrightarrow{a}|=7$,$|\overrightarrow{b}|=6$,$|\overrightarrow{a}+\overrightarrow{b}|=9$であるとき,$|(1-2t) \overrightarrow{a}+t \overrightarrow{b}|$を最小にする$t$の値を$[あ]$で求めなさい.
大阪薬科大学 私立 大阪薬科大学 2015年 第2問
次の問いに答えなさい.

$a,\ b$を正の実数の定数とし,$2$次関数$f(x)=3x^2+ax+b$を考える.$xy$座標平面上の放物線$y=f(x)$を$C$とし,$C$上の点$(1,\ f(1))$における接線を$\ell$とする.また,$\ell$を$y$軸方向に$3$だけ平行移動した直線を$m$とする.
(1)$C$の頂点の$y$座標を$q$とするとき,$q$は,$a$と$b$を用いて表すと$q=[$\mathrm{E]$}$である.
(2)$C$と$m$で囲まれる部分の面積$S$の値は$S=[$\mathrm{F]$}$である.
(3)$\ell$と$x$軸の交点の$x$座標を$r$とする.このとき,$r$は,$a$と$b$を用いて表すと$r=[$\mathrm{G]$}$である.また,大小$2$個のさいころを投げ,大きいさいころの出た目の数を$a$の値,小さいさいころの出た目の数を$b$の値とするとき,$\displaystyle 0 \leqq r \leqq \frac{1}{6}$である確率$P$の値は$P=[$\mathrm{H]$}$である.ただし,大小$2$個のさいころはそれぞれ$1$から$6$までの目が同様に確からしく出るとする.
(4)$C$と$x$軸の共有点が$2$個であるとき,その共有点の$x$座標をそれぞれ$\alpha,\ \beta$とする($\alpha<\beta$).$C$と$x$軸の共有点が$2$個であり,かつ$a,\ b$それぞれが$1 \leqq a \leqq 6$,$1 \leqq b \leqq 6$を満たす整数であるとき,$\alpha^2+\beta^2$のとり得る値の最大値と最小値を$[い]$で求めなさい.
大阪薬科大学 私立 大阪薬科大学 2015年 第3問
次の問いに答えなさい.

(1)「自然数$m$を$4$で割ったときの余りが$r$であるならば,$m(m+1)$を$4$で割ったときの余りは$r(3-r)$と等しい」ことを$r=0,\ 1,\ 2,\ 3$のそれぞれの場合について$[う]$で示しなさい.ただし,自然数$m$が整数$q,\ r$を用いて
\[ m=4q+r \quad (0 \leqq r<4) \]
と表されるとき,$r$を,$m$を$4$で割ったときの余りという.
(2)$n$を自然数とする.数列$\{a_n\}$は,初項$a_1$が$2$,公差が$2$の等差数列であり,数列$\{b_n\}$は次の条件
\[ b_1=1,\quad b_{n+1}-b_n=\frac{a_{n+1}}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められている.

(i) 一般項$a_n,\ b_n$は,$n$を用いて表すとそれぞれ$a_n=[$\mathrm{I]$}$,$b_n=[$\mathrm{J]$}$である.
(ii) $2$つの集合$A,\ B$を
\[ A=\{a_n \;|\; n \text{は}39 \text{以下の自然数} \},\quad B=\{b_n \;|\; n \text{は}12 \text{以下の自然数} \} \]
とする.このとき,$A$と$B$の共通部分$A \cap B$の要素の個数を$s$とすると,$s=[$\mathrm{K]$}$である.
(iii) $t$を自然数の定数とする.$2$つの集合$C,\ D$を
\[ C=\{a_n \;|\; n \text{は} 100 \text{以下の自然数}\},\quad D=\{b_n \;|\; n \text{は} t \text{以下の自然数}\} \]
とする.このとき,$C$と$D$の和集合$C \cup D$の要素の個数が$111$であるならば,$t$の値は$t=[$\mathrm{L]$}$である.
星薬科大学 私立 星薬科大学 2015年 第3問
次の問に答えよ.

(1)関数$f(x)=2 \log_2 (2-x)+\log_2 x$は$\displaystyle x=\frac{[$16$]}{[$17$]}$で最大値
\[ [$18$]-[$19$] \log_2 [$20$] \]
をとる.
(2)$\log_2 5=2.32$,$\log_2 11=3.46$,$m$と$n$を正の整数,$0<a<1$とするとき,
\[ \log_2 113=m \left( m-\frac{1}{2} \right)+n+a \]
と表すことができるような$(m,\ n)$の組合せは,$m$の値の小さいほうから順に,$([$21$],\ [$22$])$と$([$23$],\ [$24$])$である.
星薬科大学 私立 星薬科大学 2015年 第4問
$a>0$として,放物線$C:y=4x^2+2$,直線$\ell:y=ax-6$について次の問に答えよ.

(1)$C$が点$(2,\ 18)$で$\ell$と交わるとき,$a=[$25$][$26$]$となり,点$([$27$],\ [$28$])$でも交わる.
(2)$C$と$\ell$が接する場合$a=[$29$] \sqrt{[$30$]}$となり,接点の座標は
\[ (\sqrt{[$31$]},\ [$32$][$33$]) \]
となる.$C$,$\ell$と$y$軸で囲まれた領域の面積は$\displaystyle \frac{[$34$] \sqrt{[$35$]}}{[$36$]}$である.
星薬科大学 私立 星薬科大学 2015年 第6問
$c_y \geqq 0$,$c_z \geqq 0$として,空間に点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 0,\ 2 \sqrt{3})$,$\mathrm{C}(0,\ c_y,\ c_z)$,$\mathrm{D}(-2,\ d_y,\ d_z)$を頂点とする正四面体がある.次の問に答えよ.

(1)この正四面体$\mathrm{ABCD}$の一辺の長さは$[$51$]$であり,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[$52$]$である.
(2)点$\mathrm{C}$の座標において
\[ c_y=\frac{[$53$] \sqrt{[$54$]}}{[$55$]},\quad c_z=\frac{[$56$] \sqrt{[$57$]}}{[$58$]}, \]
点$\mathrm{D}$の座標において$d_y=[$59$]$,$d_z=[$60$]$である.
東京電機大学 私立 東京電機大学 2015年 第1問
次の各問に答えよ.

(1)方程式$11+\log_2 x=\log_2 (33x+1)$を解け.
(2)$0 \leqq x \leqq 2\pi$のとき,不等式$\cos 2x+3 \sin x-2 \geqq 0$を解け.
(3)$3$次式$f(x)$は$x^3$の係数が$1$であり,しかも$f(1)=f(2)=f(6)=12$をみたしている.方程式$f(x)=0$を解け.

(4)極限値$\displaystyle \lim_{x \to 0} \frac{\sin 5x-\sin x}{\sin 5x+\sin x}$を求めよ.

(5)定積分$\displaystyle \int_1^e \frac{\log x}{\sqrt{x}} \, dx$を求めよ.
東京電機大学 私立 東京電機大学 2015年 第2問
\begin{mawarikomi}{45mm}{

(図は省略)
}
図のような平行六面体$\mathrm{OADB}$-$\mathrm{CEGF}$において,辺$\mathrm{DG}$を$x:1-x (0<x<1)$に内分する点を$\mathrm{Q}$,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{G}$を通る平面と直線$\mathrm{OQ}$の交点を$\mathrm{P}$とする.また,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$をそれぞれ,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$とおく.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$x$を用いて表せ.
(2)$\overrightarrow{\mathrm{OP}}=k \overrightarrow{\mathrm{OQ}}$,$\overrightarrow{\mathrm{AP}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AG}}$とおくとき,$k$,$s$,$t$をそれぞれ$x$で表せ.
(3)$\mathrm{P}$が$\triangle \mathrm{ABG}$の重心と一致するとき,$x$の値を求めよ.

\end{mawarikomi}
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。