タグ「不等号」の検索結果

102ページ目:全4604問中1011問~1020問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の問いに答えよ.

(1)次の問いに答えよ.

(i) $f(x,\ y)=2x^2+11xy+12y^2-5y-2$を因数分解すると,
\[ \left(x+[$1$]y+[$2$] \right) \left([$3$]x+[$4$]y-[$5$] \right) \]
である.
(ii) $f(x,\ y)=56$を満たす自然数$x,\ y$の値は,$x=[$6$]$,$y=[$7$]$である.

(2)$xy$平面上の$2$直線$y=x+4 \sin \theta+1$,$y=-x+4 \cos \theta-3$の交点を$\mathrm{P}$とおく.ただし,$\theta$は実数とする.

(i) $\displaystyle \theta=\frac{\pi}{12}$のとき,点$\mathrm{P}$の座標は$\displaystyle \left( \sqrt{[$8$]}-[$9$],\ \sqrt{[$10$]}-[$11$] \right)$である.
(ii) $\theta$が実数全体を動くとき,点$\mathrm{P}$の軌跡は
\[ x^2+y^2+[$12$]x+[$13$]y-[$14$]=0 \]
である.

(3)$2$次関数$f(x)$は,すべての実数$x$について
\[ \int_0^x f(t) \, dt=xf(x)-\frac{4}{3}x^3+ax^2 \]
を満たす.ただし,$a$は実数である.また,$f(0)=a^2-a-6$である.このとき,

(i) $f(x)=[$15$]x^2-[$16$]ax+\left( a+[$17$] \right) \left( a-[$18$] \right)$である.
(ii) 方程式$f(x)=0$が少なくとも$1$つの正の実数解をもつような$a$の値の範囲は
\[ [$19$][$20$]<a \leqq [$21$]+\sqrt{[$22$][$23$]} \]
である.

(4)$\{a_n\}$は,数字の$1$と$2$だけで作ることのできる自然数を小さい順に並べた数列である.
\[ \{a_n\} : \ 1,\ 2,\ 11,\ 12,\ 21,\ 22,\ 111,\ \cdots \]
このとき,

(i) $a_{10}=[$24$][$25$][$26$]$,$a_{15}=\kakkofour{$27$}{$28$}{$29$}{$30$}$である.
(ii) $\displaystyle \sum_{k=7}^{14} a_k=\kakkofour{$31$}{$32$}{$33$}{$34$}$である.
(iii) $\{a_n\}$のうち,$m$桁である項の総和は$\displaystyle \frac{{[$35$]}^{m-1} \left\{ \left([$36$][$37$] \right)^m-[$38$] \right\}}{[$39$]}$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
$xy$平面上に放物線$\displaystyle P:y=\frac{1}{4}x^2$と直線$\displaystyle \ell:y=\frac{1}{2}x+\frac{1}{4}(a^2-1)$がある.ただし,$a$は$0<a<\sqrt{33}$を満たす実数である.$P$と$\ell$は異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$x_A$,$x_B$とおくと,$x_A<x_B$である.

次に,線分$\mathrm{AB}$を$1$辺とし,線分$\mathrm{CD}$が$(0,\ 8)$を通る長方形$\mathrm{ABDC}$をおく.長方形$\mathrm{ABDC}$の面積を$S(a)$とする.このとき,

(1)$2$点$\mathrm{C}$,$\mathrm{D}$を結ぶ直線の傾きは$\displaystyle \frac{[$40$]}{[$41$]}$であり,線分$\mathrm{AB}$の長さを$a$を用いて表すと$\sqrt{[$42$]}a$である.
(2)$S(a)$を$a$の式で表すと
\[ S(a)=\frac{[$43$][$44$]}{[$45$]}a^3+\frac{[$46$][$47$]}{[$48$]}a \]
である.
また,$S(a)$が最大値をとるとき,$a$の値は$\sqrt{[$49$][$50$]}$である.
(3)放物線$P$と直線$\ell$で囲まれた部分の面積が,$S(a)$の$3$倍であるとき,$a$の値は$[$51$] \sqrt{[$52$]}$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
ボタンを$1$回押すたびに$1,\ 2,\ 3,\ 4,\ 5,\ 6$のいずれかの数字が$1$つ画面に表示される機械がある.このうちの$1$つの数字$Q$が表示される確率は$\displaystyle \frac{1}{k}$であり,$Q$以外の数字が表示される確率はいずれも等しいとする.ただし,$k$は$k>6$を満たす自然数とする.

ボタンを$1$回押して表示された数字を確認する試行を繰り返すとき,$1$回目に$4$の数字,$2$回目に$5$の数字が表示される確率は,$1$回目に$5$の数字,$2$回目に$6$の数字が表示される確率の$\displaystyle \frac{8}{5}$倍である.このとき,

(1)$Q$は$[$59$]$であり,$k$は$[$60$]$である.
(2)この試行を$3$回繰り返すとき,表示された$3$つの数字の和が$16$となる確率は
\[ \frac{[$61$][$62$][$63$]}{\kakkofour{$64$}{$65$}{$66$}{$67$}} \]
である.
(3)この試行を$500$回繰り返すとき,そのうち$Q$の数字が$n$回表示される確率を$P_n$とおくと,$P_n$の値が最も大きくなる$n$の値は$[$68$][$69$]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
ある村では公共サービス$\mathrm{X}$と$\mathrm{Y}$を提供している.提供された$\mathrm{X}$の量を$x$,$\mathrm{Y}$の量を$y$で表わす.技術的条件や予算の制約によって$(x,\ y)$が実現するのは$x,\ y$がつぎの不等式をみたすときである.
\[ \begin{array}{l}
x+y \leqq 200 \\
x+5y \leqq 790 \phantom{\frac{[ ]}{2}} \\
3x+4y \leqq 720 \phantom{\frac{[ ]}{2}} \\
x,\ y \geqq 0 \phantom{\frac{[ ]}{2}}
\end{array} \]
$(x,\ y)$が実現する領域は$5$角形であり,その$5$頂点は$(0,\ 0)$,$(200,\ 0)$,$(0,\ 158)$および$\mathrm{A}([$53$][$54$][$55$],\ [$56$][$57$][$58$])$,$\mathrm{B}(80,\ [$59$][$60$][$61$])$である.

現在,一般の村民は$xy$が最大になることを望んでおり,一方,村の有力者一族は$x+10y$が最大になることを望んでいる.村長は$x$と$y$を自由に選ぶことができるが,両方の意向を尊重して
\[ \alpha xy+(1-\alpha)(x+10y) \quad (0<\alpha<1) \]
を最大化する方針をとった.
仮に,$\displaystyle \alpha=\frac{1}{3}$ならば村長の選択は$(x,\ y)=([$62$][$63$],\ [$64$][$65$][$66$])$となる.
村長は最大化のために選択すべき点を線分$\mathrm{AB}$上にとることにした.しかし,予算上端点$\mathrm{A}$も$\mathrm{B}$も選択することが認められないことがわかった.すると,$\alpha$は
\[ \frac{[$67$][$68$]}{[$69$][$70$][$71$]}<\alpha<\frac{[$72$][$73$]}{133} \]
の範囲に限定される.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$\mathrm{M}$社はブドウを栽培し,それを原料にしたワインを醸造して世界中に販売している,としよう.一般には,企業の業績には,社内のさまざまな活動だけでなく,社外の要因も大きくかかわっている.しかしながら,ここでは,問題が複雑にならないように,一部の活動に限定して,$\mathrm{M}$社の醸造計画を考えてみよう.

栽培および醸造において,量と質には,醸造量が増えれば増えるほどワインの品質が低下する,という関係があると仮定する.この関係は,
\[ q=a-bx \]
という単純な式で表されるとする.ここで,$x$はワインの醸造量(リットル),$q$はワインの品質の高さを表す$\mathrm{M}$社が独自に定めた指標とし,$a$と$b$は正の実数とする.また,変数$x$のとり得る値の範囲は,$x$と$q$がともに正の値となる範囲とする.
醸造されるワインはすべて同一の品質で,同一の価格で販売されるものとし,その価格を$p$(円/リットル)で表す.市場において,品質の高いワインは希少性が増すため,その価格は非常に高いものになる.この関係は,
\[ p=cq^2 \]
で表されると仮定する.ただし,$c$は正の実数とする.また,醸造されたワインは,上記で定まる価格で,すべて残らずに販売されてしまうものとする.
$\mathrm{M}$社は,以上の諸条件を前提にして,その年の栽培および醸造を行う.すなわち,醸造量を$x$と決め,それに応じて適切な栽培および醸造を行うことにより,品質の指標が$q$となるワインを作り,その全量(すなわち$x$)を品質の指標$q$に応じた価格$p$で販売し,売上高$y=px$(円)を得る.

(1)売上高は,
\[ x=\frac{[$69$]}{[$70$]} \cdot \frac{a}{b} \ \text{(リットル)} \]
のとき,最大値
\[ \frac{[$71$]}{[$72$][$73$]} \cdot \frac{ca \!\!\! \raisebox{3mm}[5mm][1mm]{\mkakko{$74$}}}{b} \ \text{(円)} \]
をとる.
(2)次に,ワインを醸造するに際し,技術上の制約や販売上の都合などの理由で,醸造量の下限が設けられているとしよう.この下限を正の実数$m$(リットル)で表す.$x$の取り得る値の範囲には,$x$が$m$以上という条件が追加されることになる.このときの売上高の最大値を$\overline{y}$で表し,それを与える醸造量を$\overline{x}$で表す.$\overline{x}$は$m$の関数であるので,これを$\overline{x}=f(m)$で表す.関数$f(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
同様に,$\overline{y}$も$m$の関数であるので,これを$\overline{y}=g(m)$で表す.関数$g(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
実数$\theta$は$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$を満たすとする.$\mathrm{O}(0,\ 0,\ 0)$を原点とする座標空間の$3$点
\[ \mathrm{A}(\cos^2 \theta,\ \sin \theta,\ 1+\sin^2 \theta),\quad \mathrm{B}(\sin \theta,\ 0,\ -\sin \theta),\quad \mathrm{C}(1,\ \cos 2\theta-\cos^2 \theta,\ 1) \]
に対し,それぞれ$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.

(1)$\overrightarrow{b}$は零ベクトルではないとする.$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が同一平面上にあるならば,

$\displaystyle \theta=\frac{[$27$][$28$]}{[$29$]} \pi$である.

次に$\displaystyle \theta=\frac{\pi}{6}$とし,以下このときの$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を考える.また,$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とする.
(2)点$\mathrm{P}$は$\alpha$上の点で,$|\overrightarrow{\mathrm{AP}}|$が最小になるものとする.このとき,
\[ \overrightarrow{\mathrm{AP}} \cdot \overrightarrow{b}=[$30$],\quad \overrightarrow{\mathrm{AP}} \cdot \overrightarrow{c}=[$31$] \]
が成り立つ.また,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと
\[ \overrightarrow{\mathrm{OP}}=\frac{[$32$][$33$]}{[$34$]} \overrightarrow{b}+\frac{[$35$][$36$]}{[$37$][$38$]} \overrightarrow{c} \]
となる.ただし,$\overrightarrow{u},\ \overrightarrow{v}$はベクトル$\overrightarrow{u}$と$\overrightarrow{v}$の内積を表す.

(3)三角形$\mathrm{OBC}$の面積は$\displaystyle \frac{1}{8} \sqrt{\frac{[$39$][$40$]}{[$41$]}}$であり,$|\overrightarrow{\mathrm{AP}}|=\displaystyle \sqrt{\frac{[$42$]}{[$43$][$44$]}}$なので,四面体$\mathrm{OABC}$の体積は$\displaystyle \frac{[$45$]}{[$46$]}$となる.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$p,\ q$を正の実数として,曲線$C$を$\displaystyle x^{\frac{1}{p}}+y^{\frac{1}{q}}=1 (0 \leqq x \leqq 1,\ 0 \leqq y \leqq 1)$により定義する.

(1)曲線$C$の方程式を$y$について解いて得られる関数を$y=f(x) (0 \leqq x \leqq 1)$とおく.$y=f(x)$のグラフが$0<x<1$において変曲点をもつためには$p,\ q$が条件$[あ]$を満たすことが必要十分である.
(2)曲線$C$と$x$軸,$y$軸で囲まれた図形の面積を$S(p,\ q)$とすると,$S(1,\ q)=[い]$であり,$p>1$ならば$S(p,\ q)$と$S(p-1,\ q+1)$の間には$S(p,\ q)=[う]S(p-1,\ q+1)$の関係がある.$p,\ q$がともに自然数であるときに$S(p,\ q)$を$p,\ q$の式で表すと$S(p,\ q)=[え]$である.
(3)$p=q=3$のとき,直線$\ell:x+y=\alpha$が曲線$C$と$2$点を共有するための必要十分条件は$[お]<\alpha \leqq 1$である.この条件が成り立つとき,直線$\ell$と曲線$C$の交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標を$x_1,\ x_2$とすると$\displaystyle x_1^{\frac{1}{3}}x_2^{\frac{1}{3}}=[か]$かつ$\displaystyle \left( x_1^{\frac{1}{3}}-x_2^{\frac{1}{3}} \right)^2=[き]$である.さらに$\alpha_0=[お]$とおくとき$\displaystyle \lim_{\alpha \to \alpha_0+0} \frac{\mathrm{PQ}^2}{\alpha-\alpha_0}=[く]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.また$(1)$,$(3)$に答えなさい.

以下,数列$\{a_n\}$が「長さ有限」とは,ある番号から先のすべての$n$に対して$a_n=0$となることをいう.ただし,$a_n$はすべて実数とする.また,数列$\{a_n\}$を一つの文字で表すときは$A=\{a_n\}$あるいは$A=(a_1,\ a_2,\ \cdots)$のように書く.数列$A=\{a_n\}$が長さ有限のとき,$a_n \neq 0$となるような自然数$n$の最大値を数列$A$の「長さ」と呼ぶ.ただし,すべての$n$に対して$a_n=0$である数列の長さは$0$とする.
数列$A=\{a_n\}$,$B=\{b_n\}$,および実数$c$に対して
\[ A+B=\{a_n+b_n\},\quad cA=\{ca_n\} \]
により新しい数列$A+B$および$cA$を定義する.また,$A$,$B$がともに長さ有限のときに限って$A$と$B$との「内積」$A \cdot B$および「距離」$\overline{AB}$をそれぞれ
\[ A \cdot B=\sum_{n=1}^\infty a_nb_n,\quad \overline{AB}=\sqrt{\sum_{n=1}^\infty (a_n-b_n)^2} \]
により定める.$\displaystyle \left( \sum_{n=1}^\infty \text{は実際には有限個の数の和である.} \right)$
さて,
\[ A(0)=(0,\ 0,\ 0,\ \cdots),\quad A(1)=(1,\ 0,\ 0,\ \cdots) \]
であるとし,さらに$s=2,\ 3,\ \cdots$に対して長さ$s$の数列
\[ A(s)=(a(s)_1,\ a(s)_2,\ \cdots,\ a(s)_s,\ 0,\ 0,\ \cdots) \]
が定まっていて$a(s)_n>0 (n=1,\ 2,\ \cdots,\ s)$かつ
\[ \overline{A(s)A(t)}=1 \quad (s \neq t \text{かつ}s,\ t=0,\ 1,\ 2,\ \cdots) \]
が成り立っているとする.

(1)$s \geqq 1$ならば$A(s) \cdot A(s)=1$であり,また,$t>s \geqq 1$ならば$\displaystyle A(s) \cdot A(t)=\frac{1}{2}$であることを示しなさい.ただし,$A(s)=\{a_n\}$,$A(t)=\{b_n\}$とおきなさい.
(2)$A(2),\ A(3)$を求めると
$A(2)=\left( [あ],\ [い],\ 0,\ 0,\ \cdots \right)$,
$A(3)=\left( [う],\ [え],\ [お],\ 0,\ 0,\ \cdots \right)$
である.
(3)$t>s \geqq 2$ならば数列$A(t)$と数列$A(s)$の初めの$s-1$項はすべて一致することを示しなさい.ただし,数列$A(s)$の初めの$s$項を$a_1,\ a_2,\ \cdots,\ a_s$,数列$A(t)$の初めの$t$項を$b_1,\ b_2,\ \cdots,\ b_t$とおき,また,$s$と$t$以外のすべての$i \geqq 1$について数列$A(i)$の初めの$i$項を$c(i)_1,\ c(i)_2,\ \cdots,\ c(i)_i$とおきなさい.
(4)$t=1,\ 2,\ \cdots$に対して長さ$t$の数列$B(t)$を
\[ B(t)=\frac{1}{t+1} \left\{ A(1)+A(2)+\cdots +A(t) \right\}=\frac{1}{t+1} \sum_{i=1}^t A(i) \]
により定めると,$s=1,\ 2,\ \cdots,\ t$に対して$A(s) \cdot B(t)=[か]$である.
(5)$(3)$で示されたことから,$2$つの数列$\{x_n\}$,$\{y_n\}$が定まって,すべての$s \geqq 2$に対して$A(s)$は
\[ A(s)=(x_1,\ x_2,\ \cdots,\ x_{s-1},\ y_s,\ 0,\ 0,\ \cdots) \]
と表される.$\displaystyle \frac{y_s}{x_s}$を$s$の式で表すと$\displaystyle \frac{y_s}{x_s}=[き]$である.また,$x_s$を$s$の式で表すと$x_s=[く]$となる.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$n$を自然数とする.表と裏が$\displaystyle\frac{1}{2}$の確率で出現するコインを$n$回繰り返し投げる試行をおこなう.各試行に対して$n$個の数$X_1,\ \cdots,\ X_n$をつぎのように定義する.
\[ X_i=\left\{ \begin{array}{ll}
X_{i-1}+1 & (i \text{回目の結果が表の場合}) \\
X_{i-1}+2 & (i \text{回目の結果が裏の場合})
\end{array} \right. \]
ただし$X_0=0$とする.$X_1,\ X_2,\ \cdots,\ X_n$のいずれかが値$k (1 \leqq k \leqq 2n)$と等しくなる確率を$P(n,\ k)$と記す.例えば,$n=1$ならば$\displaystyle P(1,\ 1)=\frac{1}{2}$,$\displaystyle P(1,\ 2)=\frac{1}{2}$となる.$n=2$ならば$\displaystyle P(2,\ 1)=\frac{1}{2}$,$\displaystyle P(2,\ 4)=\frac{[$1$]}{[$2$]}$となる.

$3 \leqq k \leqq n$とする.$X_i=k$となるのは,$X_{i-1}=k-1$で$i$回目の結果が表となるか,あるいは$X_{i-1}=k-2$で$i$回目の結果が裏となるかのいずれかの場合である.したがって
\[ P(n,\ k)=\frac{[$3$]}{[$4$]}P(n,\ k-1)+\frac{[$5$]}{[$6$]}P(n,\ k-2) \quad (3 \leqq k \leqq n) \]
が成り立つ.
いまコインを$10$回投げる試行を考える.このとき
\[ P(10,\ 2)=\frac{[$7$]}{[$8$]},\quad P(10,\ 5)=\frac{[$9$][$10$]}{[$11$][$12$]} \]
である.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
次の問いに答えよ.

(1)座標平面上の原点$\mathrm{O}(0,\ 0)$と点$\mathrm{A}(0,\ 2)$を通る$2$円
\[ C_1:(x+1)^2+(y-1)^2=2,\quad C_2:(x-2)^2+(y-1)^2=5 \]
が与えられている.原点$\mathrm{O}$を通る直線$L$と$C_1$,$C_2$との交点($\neq \mathrm{O}$)をそれぞれ$\mathrm{D}$,$\mathrm{E}$とする.$\mathrm{D} \neq \mathrm{E}$のとき,線分$\mathrm{DE}$の内点$\mathrm{P}$を$\mathrm{DP}:\mathrm{PE}=3:1$となるようにとる.$\mathrm{D}=\mathrm{E}$のとき,$\mathrm{P}=\mathrm{D}$とする.直線$L$を原点を中心に回転させると,点$\mathrm{P}$は
\[ \left( \frac{[$13$][$14$]}{[$15$][$16$]},\ [$17$][$18$] \right) \]
を中心とする円周上にある.
(2)$\displaystyle \frac{\pi}{12}$における$\sin,\ \cos$の値は
\[ \begin{array}{l}
\displaystyle\sin \frac{\pi}{12}=\frac{\sqrt{[$19$][$20$]}-\sqrt{[$21$][$22$]}}{4} \\
\displaystyle\cos \frac{\pi}{12}=\frac{\sqrt{[$19$][$20$]}+\sqrt{[$21$][$22$]}}{4} \phantom{\displaystyle\frac{\frac{[ ]^2}{2}}{2}}
\end{array} \]
である.これを用いて,$0<x<\pi$の範囲で方程式
\[ \frac{\sqrt{3}+1}{\cos x}-\frac{\sqrt{3}-1}{\sin x}-4 \sqrt{2}=0 \]
を解けば
\[ x=\frac{[$23$][$24$]}{[$25$][$26$]}\pi \]
を得る.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。