タグ「不等号」の検索結果

1ページ目:全4604問中1問~10問を表示)
京都大学 国立 京都大学 2016年 第1問
$xy$平面内の領域
\[ x^2+y^2 \leqq 2,\quad |x| \leqq 1 \]
で,曲線$C:y=x^3+x^2-x$の上側にある部分の面積を求めよ.
京都大学 国立 京都大学 2016年 第2問
ボタンを押すと「あたり」か「はずれ」のいずれかが表示される装置がある.「あたり」の表示される確率は毎回同じであるとする.この装置のボタンを$20$回押したとき,$1$回以上「あたり」の出る確率は$36 \, \%$である.$1$回以上「あたり」の出る確率が$90 \, \%$以上となるためには,この装置のボタンを最低何回押せばよいか.必要なら$0.3010<\log_{10}2<0.3011$を用いてよい.
東京海洋大学 国立 東京海洋大学 2016年 第2問
座標平面上に$4$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(0,\ 2)$,$\mathrm{P}(t,\ -t)$,$\mathrm{Q}(0,\ -t)$(ただし,$t>0$)をとる.$\angle \mathrm{APB}=\theta$とおく.

(1)$\tan \angle \mathrm{APQ}$を$t$を用いて表せ.
(2)$\tan \theta$を$t$を用いて表せ.
(3)$\displaystyle \frac{1}{\tan \theta}$を考えることにより,$\tan \theta$の最大値とそのときの$t$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第3問
座標平面上に放物線$C:y=x^2$がある.点$\mathrm{P}(t,\ t^2)$(ただし,$t>0$)における$C$の接線を$\ell$とし,$\ell$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.$\mathrm{M}$を通り$\ell$と直交する直線が,$y$軸,直線$x=t$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)$\angle \mathrm{QPR}$は$\ell$により二等分されることを示せ.
(2)$\triangle \mathrm{PQR}$が正三角形になるような$t$の値を求めよ.
(3)四角形$\mathrm{PQNR}$の面積を$S_1$とし,線分$\mathrm{PQ}$,$y$軸および$C$で囲まれる図形の面積を$S_2$とする.$(2)$のとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
京都大学 国立 京都大学 2016年 第1問
次の問いに答えよ.

(1)$n$を$2$以上の自然数とするとき,関数
\[ f_n(\theta)=(1+\cos \theta) \sin^{n-1} \theta \]
の$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$における最大値$M_n$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}{(M_n)}^n$を求めよ.
京都大学 国立 京都大学 2016年 第4問
$xyz$空間において,平面$y=z$の中で
\[ |x| \leqq \frac{e^y+e^{-y}}{2}-1,\quad 0 \leqq y \leqq \log a \]
で与えられる図形$D$を考える.ただし$a$は$1$より大きい定数とする.

この図形$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第4問
座標平面上に曲線$C_1:y=x^3-x$と,$C_1$を$x$軸方向に$t$(ただし,$t>0$)だけ平行移動させた曲線$C_2$がある.$C_1$と$C_2$は$2$つの共有点を持つという.

(1)$t$の範囲を求めよ.
(2)$C_1$と$C_2$で囲まれる図形の面積$S$を$t$を用いて表せ.
(3)$S$の最大値とそのときの$t$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第5問
$f(x)=\sqrt{x}e^{-\frac{x}{2}}$(ただし,$x>0$)に対し,座標平面上の曲線$C:y=f(x)$を考える.

(1)$f(x)$の極値を求めよ.
(2)曲線$C$,$2$直線$x=t$,$x=t+1$(ただし,$t>0$)および$x$軸で囲まれる図形を,$x$軸の周りに$1$回転して得られる立体の体積$V$を$t$を用いて表せ.
(3)$V$の最大値を求めよ.
東京大学 国立 東京大学 2016年 第3問
座標平面上の$2$つの放物線

$A:y=x^2$
$B:y=-x^2+px+q$

が点$(-1,\ 1)$で接している.ここで,$p$と$q$は実数である.さらに,$t$を正の実数とし,放物線$B$を$x$軸の正の向きに$2t$,$y$軸の正の向きに$t$だけ平行移動して得られる放物線を$C$とする.

(1)$p$と$q$の値を求めよ.
(2)放物線$A$と$C$が囲む領域の面積を$S(t)$とする.ただし,$A$と$C$が領域を囲まないときは$S(t)=0$と定める.$S(t)$を求めよ.
(3)$t>0$における$S(t)$の最大値を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第1問
数列$\{a_n\},\ \{b_n\}$を以下で定める.


$a_1=2,\quad b_1=1$

$\left\{ \begin{array}{l}
a_{n+1}=2a_n+3b_n \\
b_{n+1}=a_n+2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots)$



(1)$n=1,\ 2,\ 3,\ \cdots$について,


$a_n+\sqrt{3}b_n={(2+\sqrt{3})}^n$

$a_n-\sqrt{3}b_n={(2-\sqrt{3})}^n$


が成り立つことを示せ.

(2)$\displaystyle \frac{b_n}{a_n}$を$n$を用いて表せ.

(3)数列$\{e_n\}$を
\[ e_n=\frac{\sqrt{3} \, b_n}{a_n}-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,$n \geqq 3$ならば
\[ |e_n|<0.001 \]
であることを示せ.ただし,$\displaystyle 0.071<\frac{2-\sqrt{3}}{2+\sqrt{3}}<0.072$を用いてもよい.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。