タグ「不定積分」の検索結果

5ページ目:全131問中41問~50問を表示)
滋賀県立大学 公立 滋賀県立大学 2015年 第4問
次の問いに答えよ.

(1)双曲線$\displaystyle \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$($a$と$b$は正の実数)の$x>0$の部分を$H$とする.このとき,点$(-a,\ 0)$を通る傾き$t$の直線と$H$との交点を考えることにより,$H$上の点$(x,\ y)$の$x$と$y$をそれぞれ$t$の分数式で表せ.
(2)$(1)$のやり方を用いて,$y=\sqrt{x^2-1} (x>1)$で表される曲線を媒介変数$t$の分数式で表示せよ.
(3)$(2)$の結果を用いて不定積分$\displaystyle \int \frac{1}{\sqrt{x^2-1}} \, dx$を求めよ.
高知工科大学 公立 高知工科大学 2015年 第2問
関数$\displaystyle f(x)=\frac{2x}{x^2+1}$について,次の各問に答えよ.

(1)導関数$f^\prime(x)$を求めよ.
(2)関数$f(x)$の最大値と最小値,およびそのときの$x$の値を求めよ.
(3)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(4)実数$a,\ b$が条件$-2 \leqq a \leqq b \leqq 2$を満たして変化するとき,定積分$\displaystyle \int_a^b f(x) \, dx$の最大値とそのときの$a,\ b$の値を求めよ.
札幌医科大学 公立 札幌医科大学 2015年 第4問
次の問いに答えよ.

(1)次の不定積分を求めよ.

\mon[$①$] $\displaystyle \int t \sin t \, dt$
\mon[$②$] $\displaystyle \int t^2 \cos t \, dt$

座標平面の原点を$\mathrm{O}$とする.点$\mathrm{A}(0,\ 1)$を中心とし半径$1$の円$C$上の$x \geqq 0$の範囲にある点$\mathrm{P}(x_p,\ y_p)$に対して,線分$\mathrm{OP}$と$x$軸の正の部分とのなす角を$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とする.また,$\mathrm{P}$における$C$の接線上に点$\mathrm{Q}(x_q,\ y_q)$を次の条件をみたすようにとる.
\begin{itemize}
$y_q \leqq y_p$
線分$\mathrm{PQ}$の長さは,$C$上の弧$\mathrm{OP}$(ただし弧全体が$x \geqq 0$に存在する方)の長さに等しい
$\mathrm{P}$の座標が$(0,\ 2)$のときは$x_q=\pi$となるように$\mathrm{Q}$をとる
$\mathrm{P}$が$\mathrm{O}$と一致する場合は$\mathrm{Q}$も$\mathrm{O}$とし,$\theta=0$とする
\end{itemize}
(2)$\mathrm{P}$の座標を$\theta$を用いて表せ.
(3)$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(4)$\mathrm{P}$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$y_q$の最大値と最小値を求めよ.
(5)$\mathrm{P}$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\mathrm{Q}$の描く曲線と$y$軸および直線$y=2$で囲まれる部分の面積を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第1問
次の問いに答えよ.

(1)$m$を整数とし,不定積分
\[ I=\int x^m \log x \, dx \]
を計算せよ.ただし,積分定数は省略してよい.
(2)$n$を$3$以上の自然数とする.正$n$角形の頂点から相異なる$3$点を選んで三角形を作るとき,その三角形が二等辺三角形となる場合の数を$a_n$とする.

(i) $a_6,\ a_7$をそれぞれ求めよ.
(ii) 自然数$k$に対して,$a_{6k},\ a_{6k+1}$をそれぞれ$k$を用いて表せ.
静岡大学 国立 静岡大学 2014年 第4問
$\alpha$を実数とする.$2$つの関数$f(x)=e^{-x}(\sin x-\cos x)$と$g(x)=\alpha e^{-x}$について,次の問いに答えよ.

(1)$\displaystyle \int f(x) \, dx=-e^{-x} \sin x+C$であることを示せ.ただし,$C$は積分定数である.
(2)すべての$x \geqq 0$について$f(x) \leqq g(x)$が成り立つような$\alpha$の値の最小値を求めよ.
(3)$\alpha$を$(2)$で求めた最小値とする.曲線$y=f(x) (x \geqq 0)$と曲線$y=g(x) (x \geqq 0)$との共有点の$x$座標を小さい方から順に$a_0,\ a_1,\ a_2,\ \cdots$とし,$n$が自然数であるとき,
\[ S_n=\int_{a_{n-1}}^{a_n} \left\{ g(x)-\frac{|f(x)|+f(x)}{2} \right\} \, dx \]
とする.このとき,$S_n$を求めよ.
(4)$(3)$で求めた$S_n$について,無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和を求めよ.
名古屋工業大学 国立 名古屋工業大学 2014年 第1問
以下の問いに答えよ.

(1)$r \neq 1$のとき$S_n=r+2r^2+3r^3+\cdots +nr^n$を求めよ.
(2)$x>0$に対して
\[ f_n(x)=e^{-x}+2e^{-2x}+3e^{-3x}+\cdots +ne^{-nx} \]
とおく.極限$\displaystyle f(x)=\lim_{n \to \infty}f_n(x)$を求めよ.ただし$\displaystyle \lim_{t \to \infty} te^{-t}=0$であることを用いてもよい.
(3)$(2)$で得られた関数$f(x)$について,不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(4)$(2)$で得られた関数$f(x)$について,定積分$\displaystyle \int_{\log 2}^{\log 3} xf(x) \, dx$を求めよ.
岩手大学 国立 岩手大学 2014年 第1問
次の問いに答えよ.

(1)関数$y=-2 \sin 2x+2 \cos 2x+3$の最大値と最小値を求めよ.ただし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$とする.
(2)$\displaystyle \lim_{x \to 1} \frac{a \sqrt{x+3}-8}{x-1}$が有限な値になるように定数$a$の値を定め,そのときの極限値を求めよ.
(3)直線$y=x$に関する対称移動の$1$次変換を$f$とする.$1$次変換$g$が点$(2,\ 4)$を点$(4,\ 6)$に移し,合成変換$f \circ g$が点$(2,\ 2)$を点$(-12,\ 4)$に移すとき,$g$を表す行列を求めよ.
(4)次の不定積分を求めよ.
\[ \int x \log (x+1) \, dx \]
福島大学 国立 福島大学 2014年 第1問
次の問いに答えなさい.

(1)$0 \leqq \theta<2\pi$のとき,次の方程式を解きなさい.
\[ \sin \theta+\sqrt{3} \cos \theta=-1 \]
(2)次の関数を微分しなさい.
\[ y=\log (x^2+2x+1) \]
(3)次の不定積分を求めなさい.
\[ \int \frac{2x^2}{x^3+1} \, dx \]
(4)$2$個のサイコロを同時に投げる.このとき,出た目の和が素数となる確率を求めなさい.
山梨大学 国立 山梨大学 2014年 第5問
曲線$C$は媒介変数$t (0 \leqq t \leqq 2\pi)$によって,$x=t-\sin t$,$y=1-\cos t$と表される.

(1)$x$は$t$の関数として増加関数であることを示せ.
(2)$0<t<2\pi$のとき,$\displaystyle \frac{dy}{dx}$を$t$を用いた式で表せ.また,$y$の$x$に関する増減を調べよ.
(3)不定積分$\displaystyle \int \cos^2 t \, dt$および$\displaystyle \int \cos^3 t \, dt$を求めよ.
(4)曲線$C$と$x$軸で囲まれた図形を$x$軸の周りに$1$回転させてできる回転体の体積を求めよ.
山形大学 国立 山形大学 2014年 第3問
次の問に答えよ.

(1)不定積分$\displaystyle \int t \sin t \, dt$を求めよ.
(2)定積分$\displaystyle \int_0^{\frac{\pi}{2}} |\displaystyle\frac{2|{3}\pi-2t} \sin t \, dt$を求めよ.
(3)関数$f(x)$を$\displaystyle f(x)=\int_0^{\frac{\pi}{2}} |x-2t| \sin t \, dt$で定める($0 \leqq x \leqq \pi$).$f(x)$の最大値,最小値を求め,それらを与える$x$の値をそれぞれ求めよ.
スポンサーリンク

「不定積分」とは・・・

 まだこのタグの説明は執筆されていません。