タグ「三角関数」の検索結果

1ページ目:全14問中1問~10問を表示)
公立はこだて未来大学 公立 公立はこだて未来大学 2016年 第5問
$n$を自然数とする.以下の問いに答えよ.

(1)三角関数の加法定理を用いて次の等式を示せ.
\[ 2 \cos \alpha \sin \beta=\sin (\alpha+\beta)-\sin (\alpha-\beta) \]
(2)数学的帰納法によって,次の等式を証明せよ.
\[ 2 \sin \frac{\theta}{2} \sum_{l=1}^n \cos l \theta=\sin \left( n+\frac{1}{2} \right) \theta-\sin \frac{\theta}{2} \]
(3)$m$を整数とする.$\theta \neq 2m\pi$のとき,次の不等式が成り立つことを証明せよ.ただし,等号が成立する条件は調べなくてよい.
\[ |\sum_{l=1|^n \cos l \theta} \leqq \frac{1}{2} \left( 1+{|\sin \displaystyle\frac{\theta|{2}}}^{-1} \right) \]
奈良教育大学 国立 奈良教育大学 2015年 第2問
三角関数の加法定理を用いて,次が成り立つことを示せ.
\[ \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \]
香川大学 国立 香川大学 2014年 第4問
$0<r<R$とし,半径$R$の円に半径$r$の小円をいくつか外接させる.ただし,小円どうしは接するか互いに交わらないものとする(図参照).このときの小円の個数の最大値を$n$としたとき,次の問に答えよ.必要ならば,下の数表(三角関数表)を用いてよい.
(図は省略)

$*$ 三角関数表は省略した.
(1)$R=3r$のとき,$n$を求めよ.
(2)$\displaystyle n \leqq \pi \left( \frac{R}{r}+1 \right)$を示せ.
慶應義塾大学 私立 慶應義塾大学 2014年 第5問
以下の$[ト]$,$[ナ]$,$[ニ]$には三角関数は$\sin \theta$と$\cos \theta$のみを用いて記入し,$[ヌ]$には$x$の式,$[ネ]$には$y$の式を記入すること.

座標平面上の$2$点$(1,\ 0)$,$(0,\ 1)$を結ぶ曲線$C$が媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=f(\theta) \\
y=g(\theta)
\end{array} \right. \quad \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right) \]
と表されているとする.いま,関数$f(\theta)$,$g(\theta)$は$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$で連続,$\displaystyle 0<\theta<\frac{\pi}{2}$で微分可能かつ$f^\prime(\theta) \neq 0$であるとする.また$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,点$(f(\theta),\ g(\theta))$における曲線$C$の接線の傾きが$-\tan \theta$であり,この接線から$x$軸,$y$軸で切り取られる線分の長さがつねに一定で$1$であるとする.
まず,この曲線$C$の方程式を求めたい.$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,曲線$C$上の点$(f(\theta),\ g(\theta))$における接線を$y=-(\tan \theta)x+h(\theta)$と表すと$h(\theta)=[ト]$となる.この接線の傾きが$\displaystyle \frac{g^\prime(\theta)}{f^\prime(\theta)}$となることより,$f(\theta)=[ナ]$,$g(\theta)=[ニ]$となる.したがって,曲線$C$を$x,\ y$の方程式で表すと
\[ [ヌ]+[ネ]=1 \quad (x \geqq 0,\ y \geqq 0) \]
となる.
次に,点$(f(\theta),\ g(\theta))$における曲線$C$の法線を$\ell(\theta)$とする.$\displaystyle \theta \neq \frac{\pi}{4}$のとき$\ell(\theta)$と$\displaystyle \ell \left( \frac{\pi}{4} \right)$との交点の$x$座標を$X(\theta)$とすると,$\displaystyle \lim_{\theta \to \frac{\pi}{4}} X(\theta)=[ノ]$となる.
また,曲線$C$と$x$軸,$y$軸で囲まれた部分の面積は$[ハ]$である.
北海道医療大学 私立 北海道医療大学 2014年 第2問
以下の問に答えよ.

(1)座標平面上の点と方程式に関する以下の問に答えよ.

\mon[$①$] 点$(2,\ 3)$を通る傾き$m$の直線の方程式を求めよ.
\mon[$②$] 点$(2,\ 3)$から円$x^2+y^2=1$に引いた接線の傾きを求めよ.
\mon[$③$] 条件$x^2+y^2=1,\ y-x \geqq -1$を同時に満たす点$(x,\ y)$について$\displaystyle \frac{y-3}{x-2}=k$とおくとき,$k$の最大値を求めよ.

(2)三角関数に関する以下の問に答えよ.ただし$0 \leqq \theta<2\pi$とする.

\mon[$①$] $\sin \theta-\cos \theta$の最大値と最小値を求めよ.
\mon[$②$] $\sin \theta-\cos \theta \geqq -1$を満たす$\theta$の範囲を求めよ.
\mon[$③$] $\sin \theta-\cos \theta \geqq -1$を満たす$\theta$に対する$\displaystyle \frac{\sin \theta-3}{\cos \theta-2}$の最大値と最小値を求めよ.
大阪大学 国立 大阪大学 2013年 第1問
三角関数の極限に関する公式
\[ \lim_{x \to 0}\frac{\sin x}{x}=1\]
を示すことにより,$\sin x$の導関数が$\cos x$であることを証明せよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2013年 第2問
図に示したように第$1$象限内に原点を頂点の一つとして有する \\
一辺の長さが$a$である正三角形$\mathrm{OAB}$がある.この図形に関す \\
る以下の問いに答えよ.ただし,線分$\mathrm{OA}$と$x$軸とのなす角を \\
$15^\circ$とする.また,三角関数を使用する場合,三角関数は数値 \\
化すること.
\img{410_1079_2013_1}{32}

(1)三角形$\mathrm{OAB}$の面積を求めよ.
(2)三角形の二つの頂点$\mathrm{A}$,$\mathrm{B}$の座標を求めよ.
(3)直線$\mathrm{OA}$,$\mathrm{OB}$および$\mathrm{AB}$の方程式を求めよ.
(4)この三角形$\mathrm{OAB}$の内部にあり,三角形に内側で接する円の方程式を求めよ.また,この円の面積を求めよ.
小樽商科大学 国立 小樽商科大学 2013年 第2問
三角関数の加法定理を用いると
\[ \begin{array}{l}
\cos 2\theta=2 \cos^2 \theta-1,\quad \sin 2\theta=2 \sin \theta \cos \theta \\
\cos 3\theta=4 \cos^3 \theta-3 \cos \theta,\quad \sin 3\theta=3 \sin \theta-4 \sin^3 \theta
\end{array} \]
を導くことができる.このとき,次の問いに答えよ.

(1)加法定理と上の公式を利用して,$\cos 5\theta=16 \cos^5 \theta-20 \cos^3 \theta+5 \cos \theta$を導け.
(2)$\displaystyle x=\cos \frac{2\pi}{5}$とおくと,(1)より$16x^5-20x^3+5x-1=0$となる.この左辺を因数分解すると$(x-1)(ax^2+bx+c)^2$となる.整数$a,\ b,\ c$を求めよ.ただし,$a>0$とする.
(3)$\displaystyle \cos \frac{2\pi}{5}$の値を求めよ.
大阪工業大学 私立 大阪工業大学 2013年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-16x+4=0$の$2$つの実数解を$\alpha,\ \beta$とすると,$\sqrt{\alpha} \sqrt{\beta}=[ア]$であり,$\displaystyle \frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}=[イ]$である.
(2)三角関数の合成により$\sin \theta+\sqrt{3} \cos \theta=2 \sin (\theta+[ウ])$と表される.ただし,$0<[ウ]<2\pi$とする.また,$0 \leqq \theta \leqq \pi$のとき,$\sin \theta+\sqrt{3} \cos \theta=2$を満たす$\theta$は,$\theta=[エ]$である.
(3)実数$x,\ y$が$2$つの不等式$x^2+y^2 \leqq 1$,$y \geqq 0$を同時に満たすとき,$y-x$の最小値は$[オ]$であり,最大値は$[カ]$である.
(4)$1$から$15$までの数を$1$つずつ書いた$15$枚のカードの中から,同時に$2$枚のカードを引く.このとき,カードの数がどちらも偶数である確率は$[キ]$であり,$2$枚のカードの数の積が$7$の倍数である確率は$[ク]$である.
大阪工業大学 私立 大阪工業大学 2013年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-16x+4=0$の$2$つの実数解を$\alpha,\ \beta$とすると,$\sqrt{\alpha} \sqrt{\beta}=[ア]$であり,$\displaystyle \frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}=[イ]$である.
(2)三角関数の合成により$\sin \theta+\sqrt{3} \cos \theta=2 \sin (\theta+[ウ])$と表される.ただし,$0<[ウ]<2\pi$とする.また,$0 \leqq \theta \leqq \pi$のとき,$\sin \theta+\sqrt{3} \cos \theta=2$を満たす$\theta$は,$\theta=[エ]$である.
(3)実数$x,\ y$が$2$つの不等式$x^2+y^2 \leqq 1$,$y \geqq 0$を同時に満たすとき,$y-x$の最小値は$[オ]$であり,最大値は$[カ]$である.
(4)$1$から$15$までの数を$1$つずつ書いた$15$枚のカードの中から,同時に$2$枚のカードを引く.このとき,カードの数がどちらも偶数である確率は$[キ]$であり,$2$枚のカードの数の積が$7$の倍数である確率は$[ク]$である.
スポンサーリンク

「三角関数」とは・・・

 まだこのタグの説明は執筆されていません。