タグ「三角比」の検索結果

96ページ目:全1924問中951問~960問を表示)
三重大学 国立 三重大学 2013年 第4問
$e$で自然対数の底を表す.関数$f(x)$を
\[ f(x)=\log (x+\sqrt{x^2+e}) \]
で定めるとき,以下の問いに答えよ.

(1)関数$f(x)$を微分せよ.また$f^\prime(x)$が偶関数であることを示せ.
(2)定積分
\[ \int_{-1}^1 f(x) \cos \left( \frac{\pi}{2}x \right) \, dx \]
を求めよ.
(3)数列$\{a_n\}$を
\[ a_n=\int_{-1}^1 x^{2n} f(x) \cos \left( \frac{\pi}{2}x \right) \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.$n$を$2$以上とするとき,$a_n$と$a_{n-1}$の間に成り立つ関係式を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第4問
実数全体で定義された関数$f(x)$,$g(x)$を次のように定める.
\[ f(x)=\int_0^{\frac{\pi}{4}} (\tan t-x)^2 \, dt,\quad g(x)=\int_0^{\frac{\pi}{4}} |\tan t-x| \, dt \]

(1)$\displaystyle \int_0^{\frac{\pi}{4}} \tan t \, dt$,$\displaystyle \int_0^{\frac{\pi}{4}} \tan^2 t \, dt$を求めよ.
(2)$f(x)$の最小値とそのときの$x$の値を求めよ.
(3)$g(x)$の最小値とそのときの$x$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第5問
$\tan \alpha=2$,$\tan \beta=5$,$\tan \gamma=8$,$\displaystyle 0<\alpha,\ \beta,\ \gamma<\frac{\pi}{2}$とする.

(1)$\sin \alpha$を求めよ.
(2)$\tan (\alpha+\beta+\gamma)$,$\alpha+\beta+\gamma$を求めよ.
(3)$\beta-\alpha>\gamma-\beta$となることを示せ.
(4)$\displaystyle \beta>\frac{5\pi}{12}$となることを示せ.
琉球大学 国立 琉球大学 2013年 第2問
$xy$平面上の曲線$C$は媒介変数$\theta$を用いて
\[ x=\frac{2}{3}\sqrt{3}\cos \theta+\frac{\sqrt{6}}{3}\sin \theta,\quad y=\frac{\sqrt{3}}{3}\cos \theta-\frac{\sqrt{6}}{3}\sin \theta \quad (0 \leqq \theta \leqq \pi) \]
と表される.このとき,次の問いに答えよ.

(1)曲線$C$を表す$x$と$y$の関係式を求め,$xy$平面に図示せよ.
(2)点$(2,\ 0)$から曲線$C$に引いた接線の方程式と接点の座標を求めよ.
鹿児島大学 国立 鹿児島大学 2013年 第4問
次の各問いに答えよ.

(1)$\displaystyle \int_{-\pi}^\pi x \sin x \, dx$を求めよ.

(2)$\displaystyle \int_{-\pi}^\pi \sin 2x \sin 3x \, dx$を求めよ.

(3)$m,\ n$を自然数とする.$\displaystyle \int_{-\pi}^\pi \sin mx \sin nx \, dx$を求めよ.

(4)$\displaystyle \int_{-\pi}^\pi \left( \sum_{k=1}^{2013} \sin kx \right)^2 \, dx$を求めよ.
東京農工大学 国立 東京農工大学 2013年 第4問
$xy$平面上に$2$つの曲線
\[ \begin{array}{llll}
C_1: & y=\tan x+\displaystyle\frac{\sqrt{3}}{3} & & \displaystyle\left( -\frac{\pi}{2}<x<\frac{\pi}{2} \right) \\
C_2: & \displaystyle y=\sqrt{3}k \left( \cos 2x-\frac{1}{2} \right) & & \displaystyle\left( -\frac{\pi}{2}<x<\frac{\pi}{2} \right)
\end{array} \]
がある.ただし$k$は実数とする.このとき,次の問いに答えよ.

(1)$t=\tan x$とおく.$\cos 2x$を$t$の式で表せ.
(2)$\displaystyle k=-\frac{4}{3}$のとき,$C_1$と$C_2$で囲まれた部分の面積$S$を求めよ.
(3)$C_1$と$C_2$の共有点の個数が$1$になるときの$k$の範囲を求めよ.
群馬大学 国立 群馬大学 2013年 第8問
$0<x<2$とする.

(1)不等式$(\log_2x)^2+5 \log_2x<-6$を解け.
(2)不等式$\sin x+\cos 2x \geqq 1$を解け.
(3)次の$[ ]$に最も適切なものを$①$~$④$からひとつ選び,その理由を説明せよ.
条件$p,\ q$を,
\[ \begin{array}{lll}
p &:& (\log_2 x)^2+5 \log_2 x<-6 \\
q &:& \sin x+\cos 2x \geqq 1
\end{array} \]
とする.$p$は$q$であるための$[ ]$.
$①$ 必要条件である \quad $②$ 十分条件である \quad $③$ 必要十分条件である \quad $④$ 必要条件でも十分条件でもない
山口大学 国立 山口大学 2013年 第2問
$\displaystyle f(x)=\tan x,\ g(x)=\frac{4x}{\pi (\pi-2x)}$とする.$xy$平面において,曲線$y=f(x)$ \ $\displaystyle \left( 0 \leqq x<\frac{\pi}{2} \right)$と$y=g(x)$ \ $\displaystyle \left( 0 \leqq x<\frac{\pi}{2} \right)$をそれぞれ$C_1,\ C_2$とするとき,次の問いに答えなさい.

(1)$\displaystyle 0<x<\frac{\pi}{2}$のとき,不等式$f(x)>g(x)$を証明しなさい.
(2)$\displaystyle 0<a<\frac{\pi}{2}$のとき,$2$曲線$C_1,\ C_2$と直線$x=a$で囲まれた図形の面積を$S(a)$とする.このとき,$\displaystyle \lim_{a \to \frac{\pi}{2}-0}S(a)$を求めなさい.
(3)$m$を実数とし,$2$曲線$C_1,\ C_2$と直線$y=mx+1$で囲まれた図形の面積を$T(m)$とする.このとき,$\displaystyle \lim_{m \to \infty}T(m)$を求めなさい.
京都工芸繊維大学 国立 京都工芸繊維大学 2013年 第1問
一辺の長さが$1$の正十角形$D$が平面上にある.$D$の外接円を$C$とおき,$C$の中心を$\mathrm{O}$,$C$の半径を$R$とおく.$D$の頂点$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_{10}$は$C$上でこの順に反時計回りに並んでいるとする.点$\mathrm{P}_2$,$\mathrm{P}_3$から直線$\mathrm{OP}_1$へ下ろした垂線をそれぞれ$\mathrm{P}_2 \mathrm{H}_2$,$\mathrm{P}_3 \mathrm{H}_3$とする.

(1)$\displaystyle R=\frac{1}{2 \sin \theta_1}$を満たす$\theta_1 \ (0^\circ<\theta_1<90^\circ)$を求めよ.
(2)$\mathrm{P}_1 \mathrm{H}_2=\sin \theta_2$,$\mathrm{H}_2 \mathrm{H}_3=\cos \theta_3$を満たす$\theta_2,\ \theta_3 \ (0^\circ<\theta_2<90^\circ,\ 0^\circ<\theta_3<90^\circ)$を求めよ.
(3)等式$\mathrm{P}_1 \mathrm{H}_2+\mathrm{H}_2 \mathrm{H}_3+\mathrm{H}_3 \mathrm{O}=R$を用いて,$\sin 18^\circ$の値を求めよ.
(4)$D$の面積を$S$とするとき,$S^2$の値を求めよ.
福井大学 国立 福井大学 2013年 第4問
双曲線$\displaystyle C:\frac{x^2}{16}-\frac{y^2}{9}=1$上に点$\displaystyle \mathrm{A} \left( \frac{4}{\cos \theta},\ 3 \tan \theta \right)$,$\mathrm{B}(4,\ 0)$をとる.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\mathrm{A}$における$C$の接線と$\mathrm{B}$における$C$の接線との交点を$\mathrm{D}$とし,$C$の焦点のうち$x$座標が正であるものを$\mathrm{F}$とおく.このとき,以下の問いに答えよ.

(1)$\mathrm{D}$の座標を求めよ.
(2)$\displaystyle \tan \frac{\theta}{2}=m$とおく.$\tan \angle \mathrm{DFB}$を$m$を用いて表せ.
(3)直線$\mathrm{DF}$は$\angle \mathrm{AFB}$を$2$等分することを証明せよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。