タグ「三角比」の検索結果

88ページ目:全1924問中871問~880問を表示)
新潟大学 国立 新潟大学 2013年 第5問
微分可能な関数$f(x)$が,すべての実数$x,\ y$に対して
\[ f(x)f(y)-f(x+y)=\sin x \sin y \]
を満たし,さらに$f^\prime(0)=0$を満たすとする.次の問いに答えよ.

(1)$f(0)$を求めよ.
(2)関数$f(x)$の導関数$f^\prime(x)$を求めよ.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{3}} \frac{dx}{f(x)}$を求めよ.
信州大学 国立 信州大学 2013年 第1問
$xy$平面上の原点$\mathrm{O}$を中心とし,半径が$1$である円$C$の円周上に,点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(\cos \theta,\ \sin \theta)$をとる.ただし,$0<\theta<\pi$とする.このとき,次の問に答えよ.

(1)三角形$\mathrm{OAB}$の外心$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$が円$C$の円周上にあるとき,$\theta$の値を求めよ.
信州大学 国立 信州大学 2013年 第2問
$f(x)=x \sin x$とおく.このとき,次の問に答えよ.

(1)$\displaystyle \int_0^\pi f(x) \, dx$を求めよ.
(2)$0 \leqq x \leqq \pi$のとき,$f^\prime(x)<\displaystyle\frac{5}{2}$を示せ.
東京医科歯科大学 国立 東京医科歯科大学 2013年 第1問
以下の各問いに答えよ.

(1)実数$\alpha,\ \beta$が$\displaystyle 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2},\ \tan \alpha \tan \beta=1$を満たすとき,$\alpha+\beta$の値を求めよ.
(2)実数$\alpha,\ \beta,\ \gamma$が$\displaystyle 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2},\ 0<\gamma<\frac{\pi}{2},\ \alpha+\beta+\gamma=\frac{\pi}{2}$を満たすとき,
\[ \tan \alpha \tan \beta+\tan \beta \tan \gamma+\tan \gamma \tan \alpha \]
の値は一定であることを示せ.
(3)実数$\alpha,\ \beta,\ \gamma$が$\displaystyle 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2},\ 0<\gamma<\frac{\pi}{2},\ \alpha+\beta+\gamma=\frac{\pi}{2}$を満たすとき,
\[ \tan \alpha+\tan \beta+\tan \gamma \]
のとりうる値の範囲を求めよ.
信州大学 国立 信州大学 2013年 第4問
次の問いに答えよ.

(1)$x$が$\displaystyle -\frac{\pi}{4} \leqq x \leqq \frac{3\pi}{4}$をみたしながら変わるとき,$\sin x+\cos x$の値の範囲を求めよ.
(2)$x$が$\displaystyle -\frac{\pi}{4} \leqq x \leqq \frac{3\pi}{4}$をみたしながら変わるとき,$\sin 2x-\sin x-\cos x$の最大値と最小値を求めよ.
信州大学 国立 信州大学 2013年 第2問
$xy$平面上の原点$\mathrm{O}$を中心とし,半径が1である円$C$の円周上に,点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(\cos \theta,\ \sin \theta)$をとる.ただし,$0<\theta<\pi$とする.このとき,次の問に答えよ.

(1)三角形$\mathrm{OAB}$の外心$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$が円$C$の円周上にあるとき,$\theta$の値を求めよ.
信州大学 国立 信州大学 2013年 第3問
$xy$平面上に4点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(2,\ 1)$,$\mathrm{P}(u,\ v)$がある.点$\mathrm{P}$が
\[ \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}} \cos \alpha+\overrightarrow{\mathrm{OB}} \sin \beta \qquad (\text{ただし,} 0 \leqq \alpha \leqq \pi,\ 0 \leqq \beta \leqq \pi) \]
を満たすとき,点$\mathrm{P}$の存在する領域を図示せよ.
信州大学 国立 信州大学 2013年 第3問
$0<t<1$とする.$xy$平面上の曲線$\displaystyle C_1:y=t \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$y=2 \sin x \ (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)2曲線$C_1,\ C_2$の交点の$x$座標を$\alpha$とするとき,$\sin \alpha$と$\cos \alpha$を$t$を用いて表せ.
(2)2曲線$C_1,\ C_2$と$y$軸で囲まれた図形の面積を$S(t)$とする.また,2曲線$C_1,\ C_2$と,$x$軸上の2点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$,$(\pi,\ 0)$を結ぶ線分で囲まれた図形の面積を$T(t)$とする.このとき,$S(t)$と$T(t)$を求めよ.
(3)極限値$\displaystyle \lim_{t \to +0}\frac{t^2T(t)}{S(t)}$を求めよ.
信州大学 国立 信州大学 2013年 第4問
$\theta$は実数とする.行列$A=\left( \begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array} \right)$について,次の問いに答えよ.

(1)すべての自然数$k$に対して$A^k=\left( \begin{array}{rr}
\cos k\theta & \sin k\theta \\
-\sin k\theta & \cos k\theta
\end{array} \right)$が成り立つことを,数学的帰納法を用いて示せ.
(2)$n$は2以上の自然数とし,$\displaystyle \theta=\frac{2\pi}{n}$とする.$B=A+A^2+\cdots +A^{n-1}$とおくとき,$AB=B+E-A$が成り立つことを示せ.ただし,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.
(3)(2)の条件のもとで,$B=-E$が成り立つことを示せ.
金沢大学 国立 金沢大学 2013年 第1問
正の実数$a,\ b,\ c$に対して,$\mathrm{O}$を原点とする座標空間に3点$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(0,\ b,\ 0)$,$\mathrm{C}(0,\ 0,\ c)$がある.$\mathrm{AC}=2,\ \mathrm{BC}=3$かつ$\triangle \mathrm{ABC}$の面積が$\displaystyle \frac{3 \sqrt{3}}{2}$となるとき,次の問いに答えよ.

(1)$\sin \angle \mathrm{ACB}$の値を求めよ.また,線分$\mathrm{AB}$の長さを求めよ.
(2)$a,\ b,\ c$の値を求めよ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.また,原点$\mathrm{O}$から$\triangle \mathrm{ABC}$に下ろした垂線の長さを求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。