タグ「三角比」の検索結果

75ページ目:全1924問中741問~750問を表示)
津田塾大学 私立 津田塾大学 2014年 第2問
次の問に答えよ.

(1)$\displaystyle 2 \cos \frac{2}{5} \pi-2 \cos \frac{\pi}{5}+1=0$が成り立つことを利用して$\displaystyle \cos \frac{\pi}{5}$の値を求めよ.

(2)$\displaystyle \cos \frac{\pi}{5} \cdot \cos \frac{2}{5} \pi \cdot \cos \frac{3}{5} \pi \cdot \cos \frac{4}{5} \pi$の値を求めよ.
津田塾大学 私立 津田塾大学 2014年 第1問
次の問に答えよ.

(1)$\mathrm{a}$,$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$,$\mathrm{d}$の$5$文字を$1$列に並べるとき,$\mathrm{a}$が隣り合わない並べ方は何通りあるか.
(2)${10}^{\frac{n}{77}}$が$5$より大きくなる最小の自然数$n$を求めよ.ただし$\log_{10}2=0.3010$とする.
(3)$\displaystyle 0<x<\frac{\pi}{3}$のとき,$\displaystyle \cos x+\cos \left( \frac{\pi}{3}-x \right)$の取りうる値の範囲を答えよ.
広島修道大学 私立 広島修道大学 2014年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$(3x+2)(2x^2-5x+3)$を展開すると,$[$1$]$となる.
(2)男子$5$人,女子$3$人が$1$列に並ぶとき,女子$3$人が続いて並ぶ方法は$[$2$]$通り,一端に男子,もう一端に女子が並ぶ方法は$[$3$]$通りある.
(3)$\displaystyle \frac{1+2i}{1-3i}+\frac{1-4i}{1+3i}=a+bi$($a,\ b$は実数)と表すとき,$a=[$4$]$,$b=[$5$]$である.
(4)$1,\ 2,\ 3,\ 4,\ 5$の$5$個の数字を用いて$3$桁の整数をつくるとき,奇数は全部で$[$6$]$個できる.ただし,同じ数字を繰り返し用いてもよい.
(5)$0 \leqq \theta \leqq \pi$のとき,関数$y=-2 \sin^2 \theta+8 \cos \theta+3$は,$\theta=[$7$]$のとき,最小値$[$8$]$をとる.
(6)不等式$\displaystyle \frac{1}{9^x}-\frac{30}{3^x}+81 \leqq 0$の解は$[$9$]$である.また,$-2 \leqq x \leqq 0$において関数$\displaystyle y=\frac{1}{9^x}-\frac{30}{3^x}+81$は,$x=[$10$]$のとき,最小値$[$11$]$をとる.
広島修道大学 私立 広島修道大学 2014年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)方程式$x^2+4x-5=0$の解は$[$1$]$である.また,不等式$x^2+4x-5>0$の解は$[$2$]$である.
(2)整式$f(x)$を$(x-3)(x+2)$で割った余りは$4x-3$である.このとき,$f(x)$を$x+2$で割った余りは$[$3$]$である.
(3)$0 \leqq \theta \leqq \pi$のとき,関数$y=2 \cos^2 \theta+2 \sqrt{2} \sin \theta$の最大値は$[$4$]$,最小値は$[$5$]$である.
(4)$3$点$\mathrm{A}(5,\ -1)$,$\mathrm{B}(2,\ 2)$,$\mathrm{C}$を頂点とする三角形の重心の座標が$\displaystyle \left( \frac{7}{3},\ -\frac{5}{3} \right)$であるとき,点$\mathrm{C}$の座標は$[$6$]$である.このとき,点$\mathrm{C}$を通り直線$\mathrm{AB}$に平行な直線の方程式は$[$7$]$であり,$\cos B$の値は$[$8$]$である.
(5)白の碁石が$5$個,黒の碁石が$5$個,合わせて$10$個の碁石から$8$個の碁石を選んで一列に並べるとき,並べ方は$[$9$]$通りある.このうち,同じ色の碁石が連続して$5$個並ぶ並べ方は$[$10$]$通りあり,また白の碁石が連続して$4$個以上並ぶ並べ方は$[$11$]$通りある.
学習院大学 私立 学習院大学 2014年 第3問
条件${0}^{\circ} \leqq a \leqq {180}^{\circ}$を満たす$a$に対して,関数$f(x)$を
\[ f(x)=\sin (x+a)-\sqrt{3} \cos (x+a) \]
と定める.$x$が$0^\circ \leqq x \leqq {90}^\circ$の範囲を動くとき,$f(x)$の最大値と最小値を求めよ.
早稲田大学 私立 早稲田大学 2014年 第1問
$0 \leqq x \leqq 8$とする.

(1)不等式
\[ \sin \left( \frac{\pi}{12}x \right)+\cos \left( \frac{\pi}{12}x \right) \leqq \frac{\sqrt{6}}{2} \]
を満たす$x$の範囲は
\[ 0 \leqq x \leqq [ア] \quad \text{および} \quad [イ] \leqq x \leqq 8 \cdots\cdots (*) \]
である.
(2)$x$が$(*)$の範囲を動くとき,関数
\[ f(x)=|x(x-5)(x-8)| \]
は$x=[ウ]$のとき最大値$[エ]$をとる.
早稲田大学 私立 早稲田大学 2014年 第2問
$\displaystyle \sin \theta=\frac{4}{5}$を満たす$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$に対し,$a_n=5^n \sin n\theta$とおく($n=1,\ 2,\ \cdots$).次の問いに答えよ.

(1)数列$\{a_n\}$は,ある整数$A,\ B$を用いて
\[ a_{n+2}=Aa_{n+1}+Ba_n \]
と表される.このとき,$A,\ B$の値を求めよ.
(2)$a_n$は$5$で割ると$4$余る整数であることを証明せよ.
(3)$\theta$は円周率$\pi$の有理数倍ではないことを証明せよ.
昭和大学 私立 昭和大学 2014年 第2問
平面上に$2$点$\mathrm{A}(-2,\ 0)$,$\mathrm{B}(0,\ 0)$および直線$\ell:x+y=2$がある.直線$\ell$上に点$\mathrm{P}(t,\ -t+2)$をとる.次の各問に答えよ.

(1)$\angle \mathrm{APB}=\theta$とおく.このとき,常に$\displaystyle 0 \leqq \theta<\frac{\pi}{2}$となることがわかっている.
$(1$-$1)$ $t=-2$のとき,$\tan \theta$の値を求めよ.
$(1$-$2)$ $\tan \theta$を$t$を用いて表せ.
(2)$\angle \mathrm{APB}=\theta$を最大にする点$\mathrm{P}$の座標,およびそのときの$\tan \theta$の値を求めよ.
昭和大学 私立 昭和大学 2014年 第1問
次の問いに答えよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
-x+4<9 \\
3x-2<a \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
を満たす整数$x$が存在しないような$a$の値の範囲を求めよ.
(2)$2$次方程式$x^2+2kx+k+12=0$が実数解をもち,それがすべて正となるような定数$k$の値の範囲を求めよ.
(3)$\triangle \mathrm{ABC}$において$a^2=b^2+c^2+bc$のとき,$\angle \mathrm{A}$を求めよ.ただし,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$とする.
(4)$0^\circ \leqq x \leqq {180}^\circ$であるとき,不等式$2 \sin^2 x-5 \cos x+1 \leqq 0$を解け.
昭和大学 私立 昭和大学 2014年 第4問
四角形$\mathrm{ABCD}$は円$O$に内接していて,$\mathrm{AB}=3$,$\mathrm{BC}=7$,$\mathrm{CD}=7$,$\mathrm{DA}=5$とする.

(1)$\angle \mathrm{A}$の大きさを求めよ.
(2)四角形$\mathrm{ABCD}$の面積を求めよ.
(3)円$O$の半径を求めよ.
(4)三角形$\mathrm{ABD}$の内接円の半径を求めよ.
(5)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{E}$とするとき,$\sin \angle \mathrm{AEB}$の値を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。