タグ「三角比」の検索結果

69ページ目:全1924問中681問~690問を表示)
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第3問
関数$f(x)=e^{\sin x}(\sin 2x-2 \cos x)$について,以下の問いに答えよ.

(1)$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx$の値を求めよ.

(2)$0 \leqq x<2\pi$における$f(x)$の最大値を求めよ.
(3)$x \geqq 0$のとき$(x^2+2x-2)e^x \geqq f(x)$が成り立つことを示せ.
京都教育大学 国立 京都教育大学 2014年 第2問
$\theta$を実数とし,
\[ X_n=\sum_{k=0}^{n-1} \cos k\theta,\quad Y_n=\sum_{k=0}^{n-1} \sin k\theta \quad (n=1,\ 2,\ \cdots) \]
とする.このとき,

$X_n \cos \theta-Y_n \sin \theta=X_{n+1}-1,$
$X_n \sin \theta+Y_n \cos \theta=Y_{n+1}$

$(n=1,\ 2,\ \cdots)$であることを証明せよ.
信州大学 国立 信州大学 2014年 第4問
$a$を正の数とする.このとき,次の関係式をみたす関数$f(x)$を求めよ.
\[ f(x)=\int_0^{\frac{\pi}{a}} f(t) \cos (at-2ax) \, dt+1 \]
福島大学 国立 福島大学 2014年 第1問
次の問いに答えなさい.

(1)定積分
\[ \int_0^{2\pi} \sin \frac{7x}{3} \cos \frac{2x}{3} \, dx \]
を求めなさい.
(2)次の無限級数の収束,発散について調べ,収束する場合はその和を求めなさい.
\[ \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+\cdots +\frac{1}{(2n)^2-1}+\cdots \]
(3)$a$を定数とする.$x$についての方程式
\[ 1-4 \cos^2 x=a \quad (0 \leqq x<\pi) \]
の異なる解の個数を調べなさい.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

三角形$\mathrm{ABC}$において$\mathrm{AB}=\mathrm{AC}=1$,$\angle \mathrm{BAC}=2\theta$とする.

(1)三角形$\mathrm{ABC}$の内接円$C_1$の半径を$R_1(\theta)$とする.$R_1(\theta)$を$\theta$の式で表すと$R_1(\theta)=[あ]$である.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_1(\theta)$が最大値をとるような$\theta$の値を$\theta_1$とすると
\[ \sum_{k=1}^\infty \sin^k \theta_1=[い] \]
が成り立つ.
(2)三角形$\mathrm{ABC}$の内側に次のように円$C_2$,$C_3$,$\cdots$,$C_n$,$\cdots$を作る.円$C_1$の外側にあって円$C_1$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_2$とし,円$C_1$,$C_2$の外側にあって円$C_2$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_3$とする.以下同様に自然数$n \geqq 2$に対して,円$C_1$,$C_2$,$\cdots$,$C_{n-1}$の外側にあって円$C_{n-1}$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_n$とする.$C_n$の半径$R_n(\theta)$を$\theta$と$n$の式で表すと$R_n(\theta)=[う]$である.
(3)$x$の$2$次式$g_n(x)=[え]$に対して
\[ \frac{d}{d\theta}\log R_n(\theta)=-\frac{g_n(\sin \theta)}{\sin \theta \cos \theta} \]
が成り立つ.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_n (\theta)$が最大値をとるような$\theta$の値を$\theta_n$とすると$\sin \theta_n=[お]$である.
(4)$\displaystyle \lim_{n \to \infty} n \sin \theta_n=[か]$である.このことから,$\theta=\theta_n$のときの円$C_n$の面積$S_n$に対して$\displaystyle \lim_{n \to \infty}n^2S_n=[き]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
下図のように,等しい辺の長さが$a$,その挟む角(頂角)が$2 \theta$である二等辺三角形を$4$つ使って四面体を作る.$x=\cos^2 \theta$とおけば,四面体の体積$V$は
\[ V=\frac{[$24$][$25$]}{[$26$][$27$]} (1-[$28$]x) \sqrt{[$29$]x-1} a^3 \]
となる.このように作られる四面体のなかで最大の四面体の体積は
\[ \frac{[$30$] \sqrt{[$31$]}}{[$32$][$33$]}a^3 \]
である.
(図は省略)
慶應義塾大学 私立 慶應義塾大学 2014年 第5問
以下の$[ト]$,$[ナ]$,$[ニ]$には三角関数は$\sin \theta$と$\cos \theta$のみを用いて記入し,$[ヌ]$には$x$の式,$[ネ]$には$y$の式を記入すること.

座標平面上の$2$点$(1,\ 0)$,$(0,\ 1)$を結ぶ曲線$C$が媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=f(\theta) \\
y=g(\theta)
\end{array} \right. \quad \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right) \]
と表されているとする.いま,関数$f(\theta)$,$g(\theta)$は$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$で連続,$\displaystyle 0<\theta<\frac{\pi}{2}$で微分可能かつ$f^\prime(\theta) \neq 0$であるとする.また$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,点$(f(\theta),\ g(\theta))$における曲線$C$の接線の傾きが$-\tan \theta$であり,この接線から$x$軸,$y$軸で切り取られる線分の長さがつねに一定で$1$であるとする.
まず,この曲線$C$の方程式を求めたい.$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,曲線$C$上の点$(f(\theta),\ g(\theta))$における接線を$y=-(\tan \theta)x+h(\theta)$と表すと$h(\theta)=[ト]$となる.この接線の傾きが$\displaystyle \frac{g^\prime(\theta)}{f^\prime(\theta)}$となることより,$f(\theta)=[ナ]$,$g(\theta)=[ニ]$となる.したがって,曲線$C$を$x,\ y$の方程式で表すと
\[ [ヌ]+[ネ]=1 \quad (x \geqq 0,\ y \geqq 0) \]
となる.
次に,点$(f(\theta),\ g(\theta))$における曲線$C$の法線を$\ell(\theta)$とする.$\displaystyle \theta \neq \frac{\pi}{4}$のとき$\ell(\theta)$と$\displaystyle \ell \left( \frac{\pi}{4} \right)$との交点の$x$座標を$X(\theta)$とすると,$\displaystyle \lim_{\theta \to \frac{\pi}{4}} X(\theta)=[ノ]$となる.
また,曲線$C$と$x$軸,$y$軸で囲まれた部分の面積は$[ハ]$である.
自治医科大学 私立 自治医科大学 2014年 第5問
$\displaystyle \sin \theta \left( \frac{1}{\tan \theta}+\frac{\sin \theta}{\cos \theta-1} \right)=a \left( 0<\theta<\frac{\pi}{2} \right)$であるとき,$a^2$の値を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。