タグ「三角比」の検索結果

64ページ目:全1924問中631問~640問を表示)
宮城教育大学 国立 宮城教育大学 2014年 第4問
関数$f(x)=e^{\sqrt{2} \sin x}$を考える.次の問いに答えよ.

(1)$0 \leqq x \leqq 2\pi$において,関数$f(x)$の増減,極値,グラフの凹凸および変曲点を調べ,グラフの概形をかけ.
(2)$a$を実数とする.関数$f(x)$の導関数を$f^\prime(x)$とするとき,$x$の方程式$f^\prime(x)=a$の$0 \leqq x \leqq 2\pi$における実数解の個数を求めよ.
香川大学 国立 香川大学 2014年 第1問
$1$辺の長さが$1$の正六角形$\mathrm{ABCDEF}$において,$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{AF}}$と定める.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{AD}}$,$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(2)辺$\mathrm{CD}$上に点$\mathrm{G}$を,辺$\mathrm{DE}$上に点$\mathrm{H}$をとり,線分$\mathrm{AG}$と$\mathrm{AH}$で正六角形の面積を$3$等分する.このとき,$\overrightarrow{\mathrm{AG}}$と$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(3)$\overrightarrow{\mathrm{AG}}$と$\overrightarrow{\mathrm{AH}}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めよ.
香川大学 国立 香川大学 2014年 第5問
曲線$\displaystyle C_1:y=\tan x \left( 0 \leqq x<\frac{\pi}{2} \right)$,$\displaystyle C_2:y=\cos x \left( 0 \leqq x<\frac{\pi}{2} \right)$について,次の問に答えよ.

(1)$2$曲線$C_1$,$C_2$の共有点の$x$座標を$a$とするとき,$\sin a$の値を求めよ.
(2)曲線$C_1,\ C_2$と$y$軸で囲まれた図形の面積を求めよ.
山形大学 国立 山形大学 2014年 第4問
座標平面上の$1$次変換$f$は点$(1,\ 2)$を点$\displaystyle \left( \frac{1}{2}-\sqrt{3},\ 1+\frac{\sqrt{3}}{2} \right)$に,点$(3,\ 4)$を点$\displaystyle \left( \frac{3}{2}-2 \sqrt{3},\ 2+\frac{3 \sqrt{3}}{2} \right)$に移すとする.$\mathrm{O}$を原点として,次の問に答えよ.

(1)$1$次変換$f$を表す行列$A$を求めよ.
(2)点$\mathrm{P}(1,\ 0)$が$f$により点$\mathrm{Q}$に移るとき,$\angle \mathrm{POQ}$を求めよ.また線分$\mathrm{OQ}$の長さを求めよ.
(3)点$\mathrm{R}$を$(2 \cos \theta,\ 2 \sin \theta)$で定める$\displaystyle \left( 0<\theta \leqq \frac{\pi}{2} \right)$.$f$により,点$\mathrm{R}$は点$\mathrm{S}$に,点$\mathrm{S}$は点$\mathrm{T}$に,点$\mathrm{T}$は点$\mathrm{U}$に,点$\mathrm{U}$は点$\mathrm{V}$に移るとする.

(i) 三角形$\mathrm{ORS}$の面積を求めよ.
(ii) 点$(2,\ 0)$と点$\mathrm{R}$,$\mathrm{S}$,$\mathrm{T}$,$\mathrm{U}$,$\mathrm{V}$を頂点とする六角形の面積$H(\theta)$の最大値と,そのときの$\theta$の値を求めよ.
防衛医科大学校 国立 防衛医科大学校 2014年 第4問
$\displaystyle y=f(x)=\tan x \left( -\frac{\pi}{2}<x<\frac{\pi}{2},\ -\infty<y<\infty \right)$の逆関数を$\displaystyle y=f^{-1}(x)=\tan^{-1}x \left( -\infty<x<\infty,\ -\frac{\pi}{2}<y<\frac{\pi}{2} \right)$とする.このとき,以下の問に答えよ.

(1)次の問に答えよ.

(i) $\displaystyle \tan^{-1} \frac{1}{2}+\tan^{-1} \frac{1}{3}$はいくらか.

(ii) $\displaystyle \tan^{-1} \frac{1}{2}+\tan^{-1} \frac{1}{3}=\tan^{-1} \frac{1}{4}+\tan^{-1} \frac{1}{x}$を満たす実数$x$を求めよ.

(2)次の問に答えよ.

(i) $y=f^{-1}(x)$のグラフの概形を描け.
(ii) $(ⅰ)$のグラフの点$\displaystyle \left( 1,\ \frac{\pi}{4} \right)$における接線を求めよ.
(iii) 導関数$(\tan^{-1}x)^\prime$を求めよ.

(3)不定積分$\displaystyle \int \frac{1}{x^2+x+1} \, dx$を求めよ.
香川大学 国立 香川大学 2014年 第1問
$1$辺の長さが$1$の正六角形$\mathrm{ABCDEF}$において,$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{AF}}$と定める.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{AD}}$,$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(2)辺$\mathrm{CD}$上に点$\mathrm{G}$を,辺$\mathrm{DE}$上に点$\mathrm{H}$をとり,線分$\mathrm{AG}$と$\mathrm{AH}$で正六角形の面積を$3$等分する.このとき,$\overrightarrow{\mathrm{AG}}$と$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(3)$\overrightarrow{\mathrm{AG}}$と$\overrightarrow{\mathrm{AH}}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めよ.
香川大学 国立 香川大学 2014年 第1問
$1$辺の長さが$1$の正六角形$\mathrm{ABCDEF}$において,$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{AF}}$と定める.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{AD}}$,$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(2)辺$\mathrm{CD}$上に点$\mathrm{G}$を,辺$\mathrm{DE}$上に点$\mathrm{H}$をとり,線分$\mathrm{AG}$と$\mathrm{AH}$で正六角形の面積を$3$等分する.このとき,$\overrightarrow{\mathrm{AG}}$と$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(3)$\overrightarrow{\mathrm{AG}}$と$\overrightarrow{\mathrm{AH}}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めよ.
高知大学 国立 高知大学 2014年 第1問
$0 \leqq \theta \leqq \pi$とする.関数$f(x)=(x-\cos \theta+\sin \theta)^2+2 \sin^2 \theta-1$について,次の問いに答えよ.

(1)方程式$f(x)=0$が実数解を持つような$\theta$の範囲を求めよ.
(2)方程式$f(x)=0$が実数解を持つとき,その二つの解を$\alpha,\ \beta$とする.このとき,$\alpha+\beta$の最大値および最小値を求めよ.
(3)関数$y=f(x)$のグラフと$x$軸で囲まれる部分の面積が$\displaystyle \frac{\sqrt{2}}{3}$となるときの$\theta$の値を求めよ.
小樽商科大学 国立 小樽商科大学 2014年 第3問
次の$[ ]$の中を適当に補いなさい.

(1)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$とするとき,$\sin^2 \theta+2 \sin \theta \cos \theta+3 \cos^2 \theta$の最大値$M$,最小値$m$を求めると$(M,\ m)=[ ]$.
(2)$\displaystyle 2014+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+\cdots +\frac{n}{4^{n-1}} (n \geqq 2)$の値を求めると$[ ]$.
(3)$0 \leqq a \leqq 3$とするとき,$\displaystyle \int_{-3}^3 |x(x-a)| \, dx$の最大値$M$と,それを与える$a$の値を求めると$(M,\ a)=[ ]$.
小樽商科大学 国立 小樽商科大学 2014年 第5問
$2$つの曲線$K_1:y=\sin x$と$K_2:y=-\cos x+a$について,次の問いに答えよ.ただし,$a$は実数とし,$0 \leqq x \leqq \pi$とする.

(1)$K_1$と$K_2$が接するとき,接点の座標と$a$の値を求めよ.
(2)$(1)$で求めた$a$に対して,$y$軸と$K_1$,$K_2$とで囲まれた部分の面積を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。