タグ「三角比」の検索結果

61ページ目:全1924問中601問~610問を表示)
琉球大学 国立 琉球大学 2014年 第2問
$a,\ b,\ c,\ d$は$a+d=0$,$ad-bc=1$をみたす実数とし,$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.次の問いに答えよ.

(1)$A^2=-E$を示せ.
(2)$p,\ q$は実数で$p^2+q^2 \neq 0$をみたすとする.実数$x,\ y$に対して$(pA+qE)(xA+yE)=E$が成り立つとき,$x,\ y$を$p,\ q$で表せ.
(3)$\theta$を実数とする.すべての正の整数$n$に対して
\[ \{(\cos \theta)E+(\sin \theta)A \}^n=(\cos n\theta)E+(\sin n\theta)A \]
が成り立つことを,数学的帰納法を用いて証明せよ.ここで,$(\sin \theta)A$は行列$A$の$\sin \theta$倍を表す.
宮崎大学 国立 宮崎大学 2014年 第1問
次の各問に答えよ.ただし,$e$は自然対数の底を表す.

(1)次の関数を微分せよ.
\[ (ⅰ) y=\frac{\cos x}{1-\sin x} \qquad (ⅱ) y=(x+2) \sqrt{x^2+2x+5} \]
(2)次の定積分の値を求めよ.

(i) $\displaystyle \int_1^2 \frac{e^x+e^{-x}}{e^x-e^{-x}} \, dx$

(ii) $\displaystyle \int_0^{\frac{\pi}{6}} \sin (3x) \sin (5x) \, dx$

(iii) $\displaystyle \int_0^1 \frac{x^3+3x^2}{x^2+3x+2} \, dx$

\mon[$\tokeishi$] $\displaystyle \int_1^2 {x}^5{e}^{x^3} \, dx$
宮崎大学 国立 宮崎大学 2014年 第2問
曲線$\displaystyle C_1:y=\cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$上の点$\displaystyle (t,\ \cos t) \left( 0<t<\frac{\pi}{2} \right)$における曲線$C_1$の接線を$\ell$とする.また,$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$と接線$\ell$との交点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とし,放物線$\displaystyle C_2:y=-\frac{x^2}{2}+ax+c$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るものとする.このとき,次の各問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$2$曲線$C_1$,$C_2$と$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$で囲まれる部分の面積を$S$とする.$S$を,$a$と$c$を用いて表せ.
(3)$(2)$の$S$が最小となる$t$の値を求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第4問
$\displaystyle 0<a<\frac{\pi}{4}$とする.曲線$y=\sin 2x$上の点$(a,\ \sin 2a)$における接線$\ell_1$と点$\displaystyle \left( \frac{\pi}{2}-a,\ \sin 2 \left( \frac{\pi}{2}-a \right) \right)$における接線$\ell_2$が直交しているとする.このとき,次の各問いに答えよ.

(1)$a$の値を求めよ.
(2)$\ell_1$と$\ell_2$および曲線$\displaystyle y=\sin 2x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$とで囲まれた図形の面積を求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第4問
次の各問いに答えよ.

(1)$\theta$を媒介変数として,
\[ \left\{ \begin{array}{l}
x=\theta-\sin \theta \\
y=1-\cos \theta
\end{array} \right. \]
で表される曲線の$\displaystyle \theta=\frac{\pi}{2}$に対応する点における接線の方程式を求めよ.
(2)$2$つの曲線$y=e^{-x}+1$,$y=3(e^{-x}-1)$の交点の座標を求めよ.ただし,$e$は自然対数の底とする.
(3)$(2)$の$2$曲線と$y$軸で囲まれた図形を$D$とする.$D$の面積を求めよ.
(4)$(3)$で与えられた$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
福島大学 国立 福島大学 2014年 第1問
次の問いに答えなさい.

(1)$0 \leqq \theta<2\pi$のとき,次の方程式を解きなさい.
\[ \sin \theta+\sqrt{3} \cos \theta=-1 \]
(2)次の関数を微分しなさい.
\[ y=\log (x^2+2x+1) \]
(3)次の不定積分を求めなさい.
\[ \int \frac{2x^2}{x^3+1} \, dx \]
(4)$2$個のサイコロを同時に投げる.このとき,出た目の和が素数となる確率を求めなさい.
滋賀医科大学 国立 滋賀医科大学 2014年 第3問
$\displaystyle f(x)=\frac{\sin x}{e^x},\ g(x)=\frac{\cos x}{e^x}$とする.

(1)関数$f(x)$の第$4$次までの導関数を求めよ.
(2)$0 \leqq x \leqq 2\pi$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の概形をかけ.
(3)$x \geqq 0$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の交点を$x$座標の小さい順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_n$,$\cdots$とするとき,$\mathrm{P}_n$の座標を求めよ.
(4)$\mathrm{P}_n$の$x$座標を$a_n$とする.$a_n \leqq x \leqq a_{n+1}$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$で囲まれた部分の面積を$S_n$とする.$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
奈良女子大学 国立 奈良女子大学 2014年 第3問
関数$f(x)=4 \sin x+2 \cos 2x+1 (0 \leqq x \leqq 2\pi)$について,以下の問いに答えよ.

(1)$f(x)$の極値を求めよ.
(2)定積分$\displaystyle \int_0^{2\pi} f(x) \, dx$を求めよ.
(3)定積分$\displaystyle \int_0^{2\pi} |f(x)| \, dx$を求めよ.
三重大学 国立 三重大学 2014年 第4問
関数$\displaystyle f(x)=\sin \left( \frac{3}{2}x \right)+\frac{3}{4}x$と$\displaystyle g(x)=\frac{3}{4}x$について,以下の問いに答えよ.ただし,$0 \leqq x \leqq \pi$とする.

(1)$y=f(x)$の増減を調べ,そのグラフをかけ.
(2)$y=f(x)$と$y=g(x)$のグラフの共有点を求めよ.
(3)$y=f(x)$と$y=g(x)$のグラフで囲まれた図形の面積を求めよ.
三重大学 国立 三重大学 2014年 第4問
関数$\displaystyle f(x)=\sin \left( \frac{3}{2}x \right)+\frac{3}{4}x$と$\displaystyle g(x)=\frac{3}{4}x$について,以下の問いに答えよ.ただし,$0 \leqq x \leqq \pi$とする.

(1)$f(x)$の増減,凹凸を調べ,極値を求めよ.また,$y=f(x)$のグラフをかけ.
(2)$y=f(x)$と$y=g(x)$のグラフの共有点を求めよ.
(3)$y=f(x)$と$y=g(x)$のグラフで囲まれた図形を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。