タグ「三角比」の検索結果

58ページ目:全1924問中571問~580問を表示)
筑波大学 国立 筑波大学 2014年 第2問
$xy$平面上の曲線$C:y=x \sin x+\cos x-1 (0<x<\pi)$に対して,以下の問いに答えよ.ただし$\displaystyle 3<\pi<\frac{16}{5}$であることは証明なしで用いてよい.

(1)曲線$C$と$x$軸の交点はただ$1$つであることを示せ.
(2)曲線$C$と$x$軸の交点を$\mathrm{A}(\alpha,\ 0)$とする.$\displaystyle \alpha>\frac{2}{3}\pi$であることを示せ.
(3)曲線$C$,$y$軸および直線$\displaystyle y=\frac{\pi}{2}-1$で囲まれる部分の面積を$S$とする.また,$xy$平面の原点$\mathrm{O}$,点$\mathrm{A}$および曲線$C$上の点$\displaystyle \mathrm{B} \left( \frac{\pi}{2},\ \frac{\pi}{2}-1 \right)$を頂点とする三角形$\mathrm{OAB}$の面積を$T$とする.$S<T$であることを示せ.
埼玉大学 国立 埼玉大学 2014年 第4問
実数$a,\ b$は$a>b>0$および$a^2-b^2=2ab$を満たすとする.$xy$平面上で$(a \cos \theta,\ b \sin \theta)$ $(0 \leqq \theta \leqq 2\pi)$によって媒介変数表示された楕円を$C$とする.点$\displaystyle \mathrm{P}(b \cos t,\ a \sin t) \left( 0<t<\frac{\pi}{2} \right)$と$C$上の動点$\mathrm{Q}(a \cos \theta,\ b \sin \theta)$に対し,$f(\theta)=|\overrightarrow{\mathrm{PQ}}|^2$とおく.

(1)$f^\prime(\theta)=0$であるとき,$\sin 2\theta=\sin (\theta-t)$が成り立つことを示せ.
(2)$f^\prime(\theta)=0$となる$\theta$を$t$を用いて表せ.
(3)$f^\prime(\theta)=0$となる$\theta$がちょうど$3$つとなる$t$の値を求めよ.
(4)$t$を$(3)$で求めた値とする.このとき,$f^\prime(\theta)=0$となる各$\theta$に対応する$C$上の$3$点を頂点とする三角形の面積を$a,\ b$を用いて表せ.
熊本大学 国立 熊本大学 2014年 第2問
$a$を正の定数とする.条件
\[ \cos \theta-\sin \theta=a \sin \theta \cos \theta,\quad 0<\theta<\pi \]
を満たす$\theta$について,以下の問いに答えよ.

(1)条件を満たす$\theta$は,$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で,ただ$1$つ存在することを示せ.
(2)条件を満たす$\theta$の個数を求めよ.
熊本大学 国立 熊本大学 2014年 第4問
$a$を$a>2$である実数とする.$xy$平面上の曲線$\displaystyle C:y=\frac{1}{\sin x \cos x} (0<x<\frac{\pi}{2})$と直線$y=a$の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とする.以下の問いに答えよ.

(1)$\tan \alpha$および$\tan \beta$を$a$を用いて表せ.
(2)$C$と$x$軸,および$2$直線$x=\alpha$,$x=\beta$で囲まれた領域を$S$とする.$S$の面積を$a$を用いて表せ.
(3)$S$を$x$軸の周りに回転して得られる立体の体積$V$を$a$を用いて表せ.
熊本大学 国立 熊本大学 2014年 第2問
$a$を正の定数とする.条件
\[ \cos \theta-\sin \theta=a \sin \theta \cos \theta,\quad 0<\theta<\pi \]
を満たす$\theta$について,以下の問いに答えよ.

(1)条件を満たす$\theta$は,$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で,ただ$1$つ存在することを示せ.
(2)条件を満たす$\theta$の個数を求めよ.
熊本大学 国立 熊本大学 2014年 第2問
$\triangle \mathrm{ABC}$において,
\[ \angle \mathrm{BAC}=\theta,\quad \mathrm{AB}=\sin \theta,\quad \mathrm{AC}=|\cos \theta| \]
とする.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$または$\displaystyle \frac{\pi}{2}<\theta<\pi$とする.以下の問いに答えよ.

(1)$\mathrm{BC}^2$の最大値と最小値を求めよ.
(2)$\triangle \mathrm{ABC}$の面積の最大値を求めよ.
新潟大学 国立 新潟大学 2014年 第1問
$a$を$a \geqq 0$となる実数とし,$\theta$の関数$f(\theta)$を
\[ f(\theta)=2 \sin 2\theta+4a(\cos \theta-\sin \theta)+1 \]
とする.このとき,次の問いに答えよ.

(1)$t=\cos \theta-\sin \theta$とおく.このとき,$f(\theta)$を$a,\ t$を用いて表せ.
(2)$0 \leqq \theta \leqq \pi$のとき,$t$のとりうる値の範囲を求めよ.
(3)$0 \leqq \theta \leqq \pi$のとき,$f(\theta)$の最大値と最小値を$a$を用いて表せ.
新潟大学 国立 新潟大学 2014年 第1問
$a$を$a \geqq 0$となる実数とし,$\theta$の関数$f(\theta)$を
\[ f(\theta)=2 \sin 2\theta+4a(\cos \theta-\sin \theta)+1 \]
とする.このとき,次の問いに答えよ.

(1)$t=\cos \theta-\sin \theta$とおく.このとき,$f(\theta)$を$a,\ t$を用いて表せ.
(2)$0 \leqq \theta \leqq \pi$のとき,$t$のとりうる値の範囲を求めよ.
(3)$0 \leqq \theta \leqq \pi$のとき,$f(\theta)$の最大値と最小値を$a$を用いて表せ.
金沢大学 国立 金沢大学 2014年 第2問
関数$\displaystyle y=\frac{1}{e^x+e^{-x}}$のグラフ$C$について,次の問いに答えよ.

(1)$C$の変曲点のうち,$x$座標が最大となる点$\mathrm{P}$の$x$座標を求めよ.
(2)$(1)$で求めた$\mathrm{P}$の$x$座標を$b$とするとき,
\[ \tan \theta=e^b \]
をみたす$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$に対し,$\tan 2\theta$および$\theta$の値を求めよ.
(3)上の$b$に対する直線$x=b$と$x$軸,$y$軸および$C$で囲まれた図形の面積を求めよ.
信州大学 国立 信州大学 2014年 第1問
平面上のベクトル
\[ \overrightarrow{a_n}=\left( \cos \frac{n\pi}{4},\ \sin \frac{n\pi}{4} \right), \overrightarrow{b_n}=\left( 2 \cos \frac{n\pi}{6},\ 2 \sin \frac{n\pi}{6} \right) \quad (n=0,\ 1,\ 2,\ \cdots,\ 12) \]
に対して,$\displaystyle \sum_{n=0}^{12} |\overrightarrow{a_n}+\overrightarrow{b_n}|^2$を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。