タグ「三角比」の検索結果

49ページ目:全1924問中481問~490問を表示)
昭和大学 私立 昭和大学 2015年 第1問
次の各問に答えよ.

(1)$x$の関数$f(x),\ g(x)$をそれぞれ$f(x)=-x^2+2x+2$,$g(x)=x^2+2x+a$とする.ただし,$a$は定数とする.
$(1$-$1)$ $g(x)<f(x)$を満たす実数$x$が区間$-2 \leqq x \leqq 2$に存在するような,定数$a$の値の範囲を求めよ.
$(1$-$2)$ $g(x_1)<f(x_2)$を満たす実数$x_1$および$x_2$が区間$-2 \leqq x \leqq 2$に存在するような,定数$a$の値の範囲を求めよ.
(2)白球$4$個と黒球$n$個が入った袋から同時に$2$個の球を取り出すとき,$2$個の球が同色である確率を$p_n$とする.ただし,球はすべて同じ確率で取り出されるものとする.
$(2$-$1)$ $n=3$のとき,$p_n$の値を求めよ.
$(2$-$2)$ $n \geqq 2$とする.このとき,$\displaystyle p_n \geqq \frac{1}{2}$となる整数$n$の最小値を求めよ.
(3)$0 \leqq x<2\pi$のとき,不等式$\sin x+\sqrt{3} \cos x \geqq \sqrt{2}$を解け.
(4)$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.$6^{100}$の桁数を求めよ.
広島経済大学 私立 広島経済大学 2015年 第4問
$\mathrm{AB}=5 \sqrt{2}$,$\mathrm{BC}=6$,$\angle \mathrm{B}={45}^\circ$の三角形$\mathrm{ABC}$の辺$\mathrm{BC}$上に$\mathrm{AC}=\mathrm{AD}$を満たす$\mathrm{C}$と異なる点$\mathrm{D}$を定める.次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)三角形$\mathrm{ABC}$の面積は$[$28$]$である.
(2)$\mathrm{AC}=\sqrt{[$29$]}$,$\mathrm{BD}=[$30$]$である.
(3)三角形$\mathrm{ADC}$の面積は$[$31$]$である.

(4)$\displaystyle \sin \angle \mathrm{CAD}=\frac{[$32$]}{[$33$]}$である.

(5)直線$\mathrm{AD}$が三角形$\mathrm{ABC}$の外接円と交わる点($\mathrm{A}$と異なる点)を$\mathrm{E}$とする.

このとき,$\displaystyle \mathrm{EC}=\frac{[$34$] \sqrt{[$35$]}}{[$36$]}$である.
昭和大学 私立 昭和大学 2015年 第4問
次の各問に答えよ.

(1)次の問に答えよ.
$(1$-$1)$ $\displaystyle \int_0^1 \frac{dx}{1+x^2}$の値を求めよ.
$(1$-$2)$ 極限値$\displaystyle S=\lim_{n \to \infty} \left( \frac{n+3 \cdot 1}{n^2+1^2}+\frac{n+3 \cdot 2}{n^2+2^2}+\cdots +\frac{n+3 \cdot n}{n^2+n^2} \right)$を求めよ.
(2)$\displaystyle \lim_{x \to \pi} \frac{\sqrt{a+\cos x}-b}{(x-\pi)^2}=\frac{1}{8}$となるような定数$a,\ b$を求めよ.
東京都市大学 私立 東京都市大学 2015年 第1問
次の問に答えよ.

(1)$0 \leqq \theta<2\pi$のとき,方程式$\displaystyle \sin \theta-\cos \theta=\frac{1}{\sqrt{2}}$を解け.
(2)$a$を実数とする.$x$の$4$次方程式$(x^2+ax+1)(x^2+x+a)=0$が異なる$2$つの実数解と異なる$2$つの虚数解をもつような$a$の範囲を求めよ.
(3)$x^3+2yx^2-y^2x-2y^3$を因数分解せよ.
東京都市大学 私立 東京都市大学 2015年 第1問
次の問に答えよ.

(1)関数$\displaystyle y=\frac{\sin x}{x}$のグラフの$x=\pi$における接線の方程式を求めよ.
(2)$xy$平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ b)$,$\mathrm{B}(2 \cos {30}^\circ,\ 2 \sin {30}^\circ)$を頂点とする$\triangle \mathrm{OAB}$は$\angle \mathrm{OBA}={90}^\circ$,$\angle \mathrm{AOB}={15}^\circ$を満たす.このとき$a$の値を求めよ.ただし,$a<\sqrt{3}$とする.
(3)不等式$|x+1|-3 |x-1| \geqq 0$を満たす実数$x$の範囲を求めよ.
東京都市大学 私立 東京都市大学 2015年 第2問
曲線$y=\sin x (0 \leqq x \leqq 2\pi)$を$F$,曲線$\displaystyle y=\frac{1}{\sqrt{3}} \sin 2x (0 \leqq x \leqq 2\pi)$を$G$とする.

(1)$F$と$G$の交点の座標をすべて求めよ.
(2)$xy$平面上に$F$と$G$を図示せよ.$(1)$で求めた交点の座標に加え,軸との交点の座標もかくこと.
(3)$F$と$G$で囲まれた部分(境界線を含む)に含まれる点のうち,$x$と$y$がともに整数となる点の座標をすべて求めよ.
昭和大学 私立 昭和大学 2015年 第3問
次の各問に答えよ.

(1)空間に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(2,\ -1,\ 4)$がある.次の問に答えよ.
$(1$-$1)$ $\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を求めよ.
$(1$-$2)$ $\cos \angle \mathrm{AOB}$の値を求めよ.
$(1$-$3)$ $\triangle \mathrm{OAB}$の面積を求めよ.
(2)$\displaystyle \left( 2x^3-\frac{1}{3x} \right)^9$の展開式における$\displaystyle \frac{1}{x}$の係数を求めよ.
(3)実数全体で定義された関数$\displaystyle f(x)=\frac{x^4+5x^2+11}{x^2+2}$の最小値を求めよ.
(4)曲線$y=\sqrt{2+|4x-2x^2|}$と直線$y=m(x+3)$が相異なる$4$個の交点をもつような定数$m$の値の範囲を求めよ.
広島経済大学 私立 広島経済大学 2015年 第4問
$\mathrm{AB}=2$,$\mathrm{BC}=1+\sqrt{2}$,$\angle \mathrm{B}={60}^\circ$の三角形$\mathrm{ABC}$の外接円を$\mathrm{O}$とする.頂点$\mathrm{A}$を通り辺$\mathrm{BC}$に垂直な直線が円$\mathrm{O}$と交わる点($\mathrm{A}$と異なる点)を$\mathrm{D}$とする.次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$\mathrm{AC}=\sqrt{[$34$]}$である.

(2)円$\mathrm{O}$の半径は$\displaystyle \frac{\sqrt{[$35$]}}{[$36$]}$である.

(3)$\displaystyle \cos \angle \mathrm{CAD}=\frac{\sqrt{[$37$]}}{[$38$]}$である.

(4)$\displaystyle \mathrm{AD}=\frac{[$39$] \sqrt{[$40$]}+\sqrt{[$41$]}}{[$42$]}$である.

(5)三角形$\mathrm{ACD}$の面積は$\displaystyle \frac{[$43$] \sqrt{[$44$]}+[$45$] \sqrt{[$46$]}}{[$47$]}$である.
但し$[$44$]<[$46$]$とする.
東京都市大学 私立 東京都市大学 2015年 第4問
次の問に答えよ.

(1)曲線$y=\cos (\pi x)$上の点$\displaystyle \mathrm{P} \left( \frac{9}{4},\ \cos \frac{9 \pi}{4} \right)$における接線の方程式を求めよ.
(2)$a,\ b$を定数とする.放物線$y=a(x-b)^2$が点$\displaystyle \mathrm{P} \left( \frac{9}{4},\ \cos \frac{9 \pi}{4} \right)$を通り,点$\mathrm{P}$におけるこの放物線の接線が$(1)$で求めた接線と一致するとき,$a,\ b$を求めよ.
(3)$(2)$で求めた$a,\ b$に対し
\[ f(x)=\left\{ \begin{array}{ll}
\cos \pi x & \left( x \leqq \displaystyle\frac{9}{4} \right) \\
a(x-b)^2 & \left( x \geqq \displaystyle\frac{9}{4} \right) \phantom{\frac{[ ]^{[ ]}}{2}}
\end{array} \right. \]
とする.$y=f(x)$のグラフをかけ.
大阪工業大学 私立 大阪工業大学 2015年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-x+k=0$が異なる$2$つの正の実数$m$と$m^2$を解にもつとき,実数$m,\ k$の値は,$m=[ア]$,$k=[イ]$である.
(2)$f(x)=2 \sin x \cos x+\sqrt{3} \cos 2x$とする.このとき,$\displaystyle f(x)=2 \sin \left( 2x+[ウ] \right)$である.ただし,$0 \leqq [ウ]<2\pi$とする.また,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,$f(x)$の最小値$m$は,$m=[エ]$である.
(3)$3^a=2,\ 8^b=9$のとき,$a=[オ]$であり,積$ab$の値を対数を用いずに表すと,$ab=[カ]$である.
(4)$\fbox{$1$}$,$\fbox{$1$}$,$\fbox{$2$}$,$\fbox{$3$}$の$4$枚のカードのうち,$3$枚を並べて$3$桁の整数をつくるとき,つくられる整数は全部で$[キ]$個ある.また,$\fbox{$0$}$,$\fbox{$1$}$,$\fbox{$1$}$,$\fbox{$2$}$,$\fbox{$3$}$の$5$枚のカードのうち,$4$枚を並べて$4$桁の整数をつくるとき,つくられる整数は全部で$[ク]$個ある.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。