タグ「三角比」の検索結果

47ページ目:全1924問中461問~470問を表示)
埼玉工業大学 私立 埼玉工業大学 2015年 第1問
次の$[ ]$にあてはまるものを入れよ.

(1)$\displaystyle \sin \theta+\cos \theta=\frac{\sqrt{5}}{2}$のとき,
\[ \sin \theta \cos \theta=\frac{[ア]}{[イ]}, \tan \theta+\frac{1}{\tan \theta}=[ウ], \sin^4 \theta+\cos^4 \theta=\frac{[エオ]}{[カキ]} \]
である.
(2)恒等式
\[ \frac{3}{(2x-1)(x+1)}=\frac{a}{2x-1}+\frac{b}{x+1} \]
が成り立つなら$a=[ク],\ b=[ケコ]$である.
(3)$xy$平面上の原点に中心を持つ,半径$3$の円に,点$\mathrm{P}(5,\ 0)$から接線を引いた.このとき,接点は$2$つあり,それらの$x$座標は$\displaystyle \frac{[サ]}{[シ]}$である.また,接線の傾きは$\displaystyle \pm \frac{[ス]}{[セ]}$である.
(4)第$n$項が
\[ \frac{4}{n-\sqrt{4n+n^2}} \]
で表される数列の極限値は$[ソタ]$である.
大阪歯科大学 私立 大阪歯科大学 2015年 第1問
次の各問の$[ ]$にあてはまる数を入れなさい.

(1)$2015$を素因数分解したとき,最も大きい因子は$[ア]$である.
(2)一般項が$a_{n+1}=2a_n+a_{n-1}$(ただし,$a_0=1$,$a_1=1$)で表される数列の第$5$項は$[イ]$である.
(3)$\cos 2x-3 \cos x-1=0 (0 \leqq x<\pi)$の解は$[ウ]$である.
(4)$\log_2 (x-2)=\log_4 (-2x+a)$が解を持つ最小の整数$a$は$[エ]$である.
大阪歯科大学 私立 大阪歯科大学 2015年 第3問
$\triangle \mathrm{AOB}$の頂点$\mathrm{A}$から辺$\mathrm{OB}$に下ろした垂線の足を$\mathrm{H}$とする.$\mathrm{OA}=a$,$\mathrm{OB}=b$,$\mathrm{AB}=c$(ただし,$a<b$),$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,$\mathrm{OA}$上に点$\mathrm{D}$を,$\mathrm{OB}$上に点$\mathrm{E}$を$\displaystyle \mathrm{OD}=\mathrm{OE}=\frac{a}{4}$となるようにとる.以下の問に答えよ.

(1)$\cos (\angle \mathrm{AOB})$を$a,\ b,\ c$で表せ.
(2)$\overrightarrow{\mathrm{OF}}=\overrightarrow{\mathrm{OD}}+\overrightarrow{\mathrm{OE}}$となるように点$\mathrm{F}$をとる.$\mathrm{OF}$の延長と$\mathrm{AB}$の交点を$\mathrm{P}$とするとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を使って表せ.
(3)$\mathrm{OP}$と$\mathrm{AH}$の交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を使って表せ.
大阪薬科大学 私立 大阪薬科大学 2015年 第1問
次の問いに答えなさい.

(1)実数$a,\ b$に関する条件「$a>2$かつ$b \leqq 1$」の否定であるものを次のア~エのうちからひとつ選び,その記号を$[$\mathrm{A]$}$に書きなさい.ただし,該当するものがない場合は「該当なし」と書きなさい.

ア:「$a>2$または$b \leqq 1$」 \qquad イ:「$a \leqq 2$または$b>1$」
ウ:「$a<2$または$b \geqq 1$」 \qquad エ:「$a \leqq 2$かつ$b>1$」

(2)$x$についての整式$P(x)=x^3+kx^2+x+2$を$x-3$で割った余りが$k$となるような定数$k$の値は$k=[$\mathrm{B]$}$である.
(3)$\displaystyle 0<\alpha<\frac{\pi}{2}$で,$\tan \alpha=3$のとき,$\displaystyle \sin \left( 2 \alpha +\frac{\pi}{3} \right)$の値を$c$とすると,$c=[$\mathrm{C]$}$である.
(4)正の実数$x,\ y$が,$x^2+4y=1$を満たすとき,$2 \log_2 x+\log_2 y$のとり得る値の最大値を$d$とすると,$d=[$\mathrm{D]$}$である.
(5)$t$を実数とする.平面上のベクトル$\overrightarrow{a}$と$\overrightarrow{b}$が,$|\overrightarrow{a}|=7$,$|\overrightarrow{b}|=6$,$|\overrightarrow{a}+\overrightarrow{b}|=9$であるとき,$|(1-2t) \overrightarrow{a}+t \overrightarrow{b}|$を最小にする$t$の値を$[あ]$で求めなさい.
東京電機大学 私立 東京電機大学 2015年 第1問
次の各問に答えよ.

(1)方程式$11+\log_2 x=\log_2 (33x+1)$を解け.
(2)$0 \leqq x \leqq 2\pi$のとき,不等式$\cos 2x+3 \sin x-2 \geqq 0$を解け.
(3)$3$次式$f(x)$は$x^3$の係数が$1$であり,しかも$f(1)=f(2)=f(6)=12$をみたしている.方程式$f(x)=0$を解け.

(4)極限値$\displaystyle \lim_{x \to 0} \frac{\sin 5x-\sin x}{\sin 5x+\sin x}$を求めよ.

(5)定積分$\displaystyle \int_1^e \frac{\log x}{\sqrt{x}} \, dx$を求めよ.
津田塾大学 私立 津田塾大学 2015年 第2問
$f(x)=4x^3-3x+c$とする.

(1)$f(x)=0$が異なる$3$つの実数解をもつような$c$の値の範囲を求めよ.
(2)$c=\sin 3\theta (-{30}^\circ<\theta<{30}^\circ)$とする.このとき$f(x)=0$の$3$つの解を$a \cos \theta+b \sin \theta$の形で表せ.ただし,$a,\ b$は定数とする.
東京電機大学 私立 東京電機大学 2015年 第4問
次の各問に答えよ.

(1)方程式$11+\log_2 x=\log_2 (33x+1)$を解け.
(2)$0 \leqq x \leqq 2\pi$のとき,不等式$\cos 2x+3 \sin x-2 \geqq 0$を解け.
(3)$3$次式$f(x)$は$x^3$の係数が$1$であり,しかも$f(1)=f(2)=f(6)=12$をみたしている.方程式$f(x)=0$を解け.
(4)曲線$C:y=x(x-1)(x+a)$上の点$(1,\ 0)$における接線が$C$自身と$x=3$において共有点をもつ.このとき,定数$a$の値を求めよ.
(5)曲線$C:y=|x^2-4|$と直線$\ell:y=2x+4$で囲まれた$2$つの図形の面積の和を求めよ.
北海道薬科大学 私立 北海道薬科大学 2015年 第3問
$\displaystyle \sin \theta-\cos \theta=\frac{1}{3} \left( 0<\theta<\frac{3}{4} \pi \right)$であるとする.

(1)$\sin \theta \cos \theta$の値は$\displaystyle \frac{[ア]}{[イ]}$である.

(2)$\displaystyle \sin^3 \theta-\cos^3 \theta=\frac{[ウエ]}{[オカ]}$,$\displaystyle \sin^3 \theta+\cos^3 \theta=\frac{[キ] \sqrt{[クケ]}}{[コサ]}$である.

(3)$\displaystyle \tan \theta=\frac{[シ]+\sqrt{[スセ]}}{[ソ]}$である.
東京女子大学 私立 東京女子大学 2015年 第1問
$0 \leqq \theta<2\pi$のとき,関数$\displaystyle y=4 \cos^2 \frac{\theta}{2}-\cos 2\theta+1$の最大値と最小値を求めよ.また,そのときの$\theta$の値を求めよ.
神戸薬科大学 私立 神戸薬科大学 2015年 第7問
$\triangle \mathrm{ABC}$の$3$つの角$A,\ B,\ C$に対して,$\sin A:\sin B:\sin C=3:5:7$であるとき,$\tan A=[テ]$であり,角$C$の大きさをラジアンで求めると$C=[ト]$である.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。