タグ「三角比」の検索結果

44ページ目:全1924問中431問~440問を表示)
甲南大学 私立 甲南大学 2015年 第1問
以下の問いに答えよ.

(1)$a$を実数とする.すべての実数$x$に対して${(ax+1)}^2 \geqq x+1$となる$a$を求めよ.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,$\displaystyle \int_{-\sin^2 \theta}^{\cos^2 \theta} |x| \, dx=\frac{3}{8}$を満たす$\theta$を求めよ.
甲南大学 私立 甲南大学 2015年 第1問
以下の問いに答えよ.

(1)$a$を実数とする.すべての実数$x$に対して${(ax+1)}^2 \geqq x+1$となる$a$を求めよ.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,$\displaystyle \int_{-\sin^2 \theta}^{\cos^2 \theta} |x| \, dx=\frac{3}{8}$を満たす$\theta$を求めよ.
広島工業大学 私立 広島工業大学 2015年 第1問
次の問いに答えよ.

(1)$9$人が無記名で$3$人$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のうちの$1$人に必ず投票するとき,開票結果は何通りあるか求めよ.
(2)$y=\sin 2x$のグラフを$x$軸方向へ$a$だけ,$y$軸方向へ$b$だけ平行移動したら,$\displaystyle y=-\cos \left( 2x+\frac{\pi}{3} \right)-2$のグラフと一致した.定数$a,\ b$の値を求めよ.ただし,$0 \leqq a \leqq \pi$とする.
(3)$\triangle \mathrm{ABC}$の辺上に点$\mathrm{P}$がある.$\mathrm{A}(-8,\ 2)$,$\mathrm{B}(2,\ -3)$,$\mathrm{C}(2,\ 2)$のとき,原点$\mathrm{O}(0,\ 0)$と点$\mathrm{P}$との距離の最小値を求めよ.
東京理科大学 私立 東京理科大学 2015年 第1問
$[ ]$内に$0$から$9$までの数字を$1$つずつ入れよ.

(1)$a$を正の定数とし,関数
\[ f(x)=\tan 2x \ \left( 0 \leqq x<\frac{\pi}{4} \right) \text{および} g(x)=a \cos x\ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
に対して,曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を$\theta$とする.曲線$y=f(x)$と$x$軸,および直線$x=\theta$で囲まれた部分の面積$S$を考える.

(i) $a=[ア]$のとき,$\displaystyle \theta=\frac{\pi}{6}$である.このとき$\displaystyle S=\frac{[イ]}{[ウ]} \times \log [エ]$である.
(ii) $a=\sqrt{[オ]}$のとき,$\displaystyle S=\frac{1}{2} \log \frac{\sqrt{7}+1}{2}$である.

ただし,正の数$A$に対して,$\log A$は$A$の自然対数を表す.
(2)$1$個のサイコロを投げ,その出た目によって,点$\mathrm{P}$を座標平面上で移動させる試行を繰り返す.
点$\mathrm{P}$の出発点$(x_0,\ y_0)$を原点$(0,\ 0)$とし,$1$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_1,\ y_1)$,$2$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_2,\ y_2)$,以下同様に$k$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_k,\ y_k)$とする.
座標$(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots)$は次のルールによって定める.
サイコロを$k$回目に投げたとき,出た目を$3$で割った商を$q$,余りを$r$として,$x_k$を次のように$q$によって定め,
\[ \left\{ \begin{array}{ll}
q=0 & \text{のとき}x_k=x_{k-1} \\
q=1 & \text{のとき}x_k=x_{k-1}+1 \\
q=2 & \text{のとき}x_k=x_{k-1}-1
\end{array} \right. \]
$y_k$を次のように$r$によって定める.
\[ \left\{ \begin{array}{ll}
r=0 & \text{のとき}y_k=y_{k-1} \\
r=1 & \text{のとき}y_k=y_{k-1}+1 \\
r=2 & \text{のとき}y_k=y_{k-1}-1
\end{array} \right. \]
ただし,サイコロを投げたとき,$1$から$6$の目がそれぞれ確率$\displaystyle \frac{1}{6}$で出るものとする.

(i) $(x_2,\ y_2)=(0,\ 0)$である確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$(x_3,\ y_3)=(0,\ 0)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(ii) $x_k+y_k$が偶数である確率を$p_k$とすると,$\displaystyle p_1=\frac{[カ]}{[キ]}$であり,
\[ p_k=\frac{[ク]}{[ケ]} \cdot \left( -\frac{[コ]}{[サ]} \right)^k+\frac{[シ]}{[ス]} \quad (k=2,\ 3,\ 4,\ \cdots) \]
である.

(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:1$の比に内分する点を$\mathrm{P}$($\mathrm{OP}:\mathrm{PA}=2:1$),辺$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{Q}$($\mathrm{OQ}:\mathrm{QC}=1:2$),辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.


(i) $\displaystyle \mathrm{MP}=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \mathrm{MQ}=\frac{\sqrt{[ウエ]}}{[オ]}$である.

(ii) 三角形$\mathrm{MPQ}$の面積は$\displaystyle \frac{[カ]}{[キク]} \times \sqrt{[ケコ]}$である.

(iii) 辺$\mathrm{BC}$上の$\displaystyle \mathrm{BR}=\frac{[サ]}{[シ]}$となる点$\mathrm{R}$は,$3$点$\mathrm{M}$,$\mathrm{P}$,$\mathrm{Q}$で定まる平面上にある.
東京理科大学 私立 東京理科大学 2015年 第3問
原点を$\mathrm{O}$とする座標平面において点$\mathrm{R}(a,\ b) (a>0,\ b>0)$をとる.$x$軸の正の部分に点$\mathrm{P}$を,$y$軸の正の部分に点$\mathrm{Q}$を,線分$\mathrm{PQ}$が点$\mathrm{R}$を通るようにとる.以下,$\displaystyle \angle \mathrm{OPQ}=\theta \left( 0<\theta<\frac{\pi}{2} \right)$とおく.

(1)線分$\mathrm{PQ}$の長さを,$\theta$および$a,\ b$を用いて表しなさい.
(2)線分$\mathrm{PQ}$の長さを最小にする角$\theta$に対して,$\tan \theta$および線分$\mathrm{PQ}$の長さを$a,\ b$を用いて表しなさい.
(3)$a=1$,$b=8$とする.三角形$\mathrm{OPQ}$の$3$辺の長さの和を最小にする角$\theta$に対して,$\tan \theta$の値および線分$\mathrm{PQ}$の長さを求めなさい.
広島工業大学 私立 広島工業大学 2015年 第4問
放物線$y=x^2+ax+b$と$x$軸との交点の座標は$(\sin \theta,\ 0)$,$(\sqrt{3} \cos \theta,\ 0)$である.この放物線と$x$軸とで囲まれる部分の面積を$S$とするとき,次の問いに答えよ.ただし,$a,\ b$は定数とし,$\displaystyle \frac{\pi}{2} \leqq \theta \leqq \pi$とする.

(1)$a,\ b$を$\theta$を用いて表せ.
(2)$a=0$のとき,$S$の値を求めよ.
(3)$S$の最大値を求めよ.
広島工業大学 私立 広島工業大学 2015年 第5問
次の各問いに答えよ.

(1)$0^\circ<\theta<{180}^\circ$,$2 \sin \theta+3 \cos \theta=0$のとき,$\cos \theta$の値を求めよ.
(2)$3nm-6n=5m-5$となる正の整数の組$(m,\ n)$を求めよ.
(3)$1$から$100$までの整数で$3$の倍数であるが$5$の倍数でないものの個数を求めよ.
金沢工業大学 私立 金沢工業大学 2015年 第5問
次の問いに答えよ.

(1)$0 \leqq \theta<2\pi$のとき,方程式$\sin \theta-\sqrt{3} \cos \theta=0$を満たす$\theta$の値は$\displaystyle \theta=\frac{\pi}{[ア]}$,$\frac{[イ]}{[ウ]} \pi$である.
(2)$0 \leqq \theta<2\pi$のとき,不等式$\sin^2 \theta-3 \cos^2 \theta \geqq 0$を満たす$\theta$の値の範囲は$\displaystyle \frac{\pi}{[エ]} \leqq \theta \leqq \frac{[オ]}{[カ]} \pi$,$\displaystyle \frac{[キ]}{[ク]} \pi \leqq \theta \leqq \frac{[ケ]}{[コ]} \pi$である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)$\displaystyle f(x)=4x^4+8x^3+3x^2-2x+\frac{1}{4}$,$\displaystyle g(x)=4x^4-8x^3+3x^2+2x+\frac{1}{4}$で定められる関数に対して,

$f(x)$は$\displaystyle x=-\frac{[ア]}{[イ]}+\frac{[ウ]}{[エ]} \sqrt{3}$において最小値$\displaystyle \frac{[オ][カ]}{[キ][ク]}-\frac{[ケ]}{[コ]} \sqrt{3}$をとり,

$g(x)$は$\displaystyle x=\frac{[サ]}{[シ]}-\frac{[ス]}{[セ]} \sqrt{3}$において最小値$\displaystyle \frac{[ソ][タ]}{[チ][ツ]}-\frac{[テ]}{[ト]} \sqrt{3}$をとる.

(2)$a$を正の実数とし,座標平面上の$2$曲線$\displaystyle B_1:y={\left( \frac{a}{\pi} x \right)}^2$と$B_2:y=\sin x$の$0<x<\pi$における交点の$x$座標を$t$,$0 \leqq x \leqq t$において$2$曲線で囲まれた領域の面積を$S$とすると,
\[ S=[ナ]-\frac{[ニ]}{[ヌ]}t \sin t-[ネ] \cos t \]
である.
$a=2$のとき,$\displaystyle t=\frac{[ノ]}{[ハ]} \pi$である.

$0<a \leqq 2$に対して$S$がとり得る値の範囲は
\[ [ヒ]-\frac{[フ]}{[ヘ]} \pi \leqq S<[ホ] \]
である.
(3)空調のある$1$号室,$2$号室,$3$号室は電力事情により,同時に$1$部屋しか空調の電源をオンにできない.最初は$1$号室の電源をオンにすることにし,それ以降は$1$時間ごとに大小の$2$つの公平なさいころをふって,どの部屋の電源をオンにするかを以下のように決める.
\begin{itemize}
大きい方のさいころの目が奇数ならば,小さい方の目にかかわらず同じ部屋の電源をオンにしたままとする.
大きい方のさいころの目が偶数ならば,残りの$2$つの部屋のどちらか一方の電源をオンにする.その際,小さい方のさいころの目が奇数ならば,番号の小さい部屋の電源,偶数ならば番号の大きい方の電源をオンにする.
\end{itemize}
自然数$n$に対して,$1$号室の電源を最初にオンにした時から$n$時間後に,$1$号室の空調の電源をオンにする確率を$a_n$,$2$号室の空調の電源をオンにする確率を$b_n$,$3$号室の空調の電源をオンにする確率を$c_n$とする.


(i) $\displaystyle a_1=\frac{[マ]}{[ミ]}$,$\displaystyle b_1=\frac{[ム]}{[メ]}$,$\displaystyle c_1=\frac{[モ]}{[ヤ]}$である.

すべての自然数$n$に対して以下が成り立つ.
(ii) $a_n+b_n+c_n=[ユ]$

(iii) $\displaystyle a_{n+1}=\frac{[ヨ]}{[ラ]}a_n+\frac{[リ]}{[ル]}b_n+\frac{[リ]}{[ル]}c_n$

\mon[$\tokeishi$] $\displaystyle a_n=\frac{[レ]}{[ロ]} {\left( \frac{[ワ]}{[ヲ]} \right)}^n+\frac{[ン]}{[あ]}$

$\displaystyle b_n=-\frac{[い]}{[う]} {\left( \frac{[え]}{[お]} \right)}^n+\frac{[か]}{[き]}$

$\displaystyle c_n=-\frac{[く]}{[け]} {\left( \frac{[こ]}{[さ]} \right)}^n+\frac{[し]}{[す]}$
金沢工業大学 私立 金沢工業大学 2015年 第2問
次の問いに答えよ.

(1)実数$x$について,等式
\[ \sin x-\sqrt{3} \cos x=[ス] \sin \left( x-\frac{\pi}{[セ]} \right) \]
が成り立つ.
(2)$0 \leqq x<2\pi$を満たす実数$x$について,無限等比級数
\[ 1+(\sin x-\sqrt{3} \cos x)+{(\sin x-\sqrt{3} \cos x)}^2+{(\sin x-\sqrt{3} \cos x)}^3+\cdots \]
は$\displaystyle \frac{\pi}{[ソ]}<x<\frac{\pi}{[タ]},\ \frac{[チ]}{[ツ]} \pi<x<\frac{[テ]}{[ト]} \pi$で収束し,その和は
\[ \frac{1}{1-[ナ] \sin \left( x-\displaystyle\frac{\pi}{[ニ]} \right)} \]
である.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。