タグ「三角比」の検索結果

29ページ目:全1924問中281問~290問を表示)
熊本大学 国立 熊本大学 2015年 第1問
$\triangle \mathrm{ABC}$の$3$辺の長さを$\mathrm{BC}=a$,$\mathrm{AC}=b$,$\mathrm{AB}=c$とし,条件
\[ a+b+c=1,\quad 9ab=1 \]
が成り立つとする.以下の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)$\theta=\angle \mathrm{C}$とするとき,$\cos \theta$の値の範囲を求めよ.
熊本大学 国立 熊本大学 2015年 第4問
$r$を正の実数とする.数列$\{a_n\}$を
\[ a_n=\int_0^{n\pi} e^{-rx}|\sin x| \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
と定めるとき,以下の問いに答えよ.

(1)$a_{n+1}-a_n$を求めよ.
(2)$\{a_n\}$の一般項を求めよ.
(3)$\displaystyle \lim_{n \to \infty}a_n$を$r$を用いて表せ.
(4)$(3)$で求めた$r$の式を$f(r)$とおく.$\displaystyle \lim_{r \to +0}rf(r)$を求めよ.
熊本大学 国立 熊本大学 2015年 第4問
数列$\{a_n\}$を
\[ a_n=\int_0^{n\pi} e^{-x}|\sin x| \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
と定めるとき,以下の問いに答えよ.

(1)$a_{n+1}-a_n$を求めよ.
(2)$\{a_n\}$の一般項を求めよ.
(3)$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
静岡大学 国立 静岡大学 2015年 第4問
$i$を虚数単位,$r$を$1$より大きい実数とし,$\displaystyle w=r \left( \cos \frac{\pi}{24}+i \sin \frac{\pi}{24} \right)$とおく.また,数列$\{z_n\}$を次の式で定める.
\[ z_1=w,\quad z_{n+1}=z_nw^{n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$z_2$を$r$を用いて表せ.
(2)$z_n$の偏角の$1$つを$n$を用いて表せ.
(3)複素数平面で原点を$\mathrm{O}$,$z_n$で表される点を$\mathrm{P}_n$とする.$7 \leqq n \leqq 48$のとき,$\triangle \mathrm{P}_n \mathrm{OP}_{n+1}$が$\displaystyle \angle \mathrm{O}=\frac{\pi}{3}$を満たす直角三角形となるような$n$と$r$をそれぞれ求めよ.また,そのときの$z_n$の偏角$\theta$を$0 \leqq \theta<2\pi$の範囲で求めよ.
静岡大学 国立 静岡大学 2015年 第4問
$i$を虚数単位,$r$を$1$より大きい実数とし,$\displaystyle w=r \left( \cos \frac{\pi}{24}+i \sin \frac{\pi}{24} \right)$とおく.また,数列$\{z_n\}$を次の式で定める.
\[ z_1=w,\quad z_{n+1}=z_nw^{n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$z_2$を$r$を用いて表せ.
(2)$z_n$の偏角の$1$つを$n$を用いて表せ.
(3)複素数平面で原点を$\mathrm{O}$,$z_n$で表される点を$\mathrm{P}_n$とする.$7 \leqq n \leqq 48$のとき,$\triangle \mathrm{P}_n \mathrm{OP}_{n+1}$が$\displaystyle \angle \mathrm{O}=\frac{\pi}{3}$を満たす直角三角形となるような$n$と$r$をそれぞれ求めよ.また,そのときの$z_n$の偏角$\theta$を$0 \leqq \theta<2\pi$の範囲で求めよ.
琉球大学 国立 琉球大学 2015年 第1問
次の問いに答えよ.

(1)$3$次方程式$x^3-ax-6=0$が$x=-1$を解にもつとき,定数$a$の値と他の解を求めよ.
(2)$\displaystyle \log_2 \frac{1}{6}+\log_2 \frac{3}{4}$の値を求めよ.
(3)平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ \sqrt{3})$,$\mathrm{P}(\cos \theta,\ \sin \theta)$をとる.$0 \leqq \theta <2\pi$のとき,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}$の最大値と,そのときの$\theta$の値を求めよ.
琉球大学 国立 琉球大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle F(x)=\int_x^{2x} e^t \, dt$とするとき,$F(1)$および$F^\prime(x)$を求めよ.
(2)関数$f(x),\ g(x)$が,
\[ \left\{ \begin{array}{l}
f(x)+\int_0^x g(t) \, dt=2 \sin x-3 \\
f^\prime(x)g(x)=\cos^2 x \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
を満たすとき,$f(x)$,$g(x)$を求めよ.
香川大学 国立 香川大学 2015年 第1問
図のような一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とする.$\mathrm{M}$を辺$\mathrm{OC}$の中点,$\mathrm{R}$,$\mathrm{S}$をそれぞれ辺$\mathrm{AE}$,辺$\mathrm{GF}$上の点とする.$\mathrm{AR}=r$,$\mathrm{GS}=s$,$\angle \mathrm{RMS}=\theta$とおくとき,次の問に答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{MR}}$,$\overrightarrow{\mathrm{MS}}$を,それぞれ$r,\ s,\ \overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$を用いて表せ.
(2)$\cos \theta$を$r,\ s$を用いて表せ.
(3)$\triangle \mathrm{MRS}$が$\angle \mathrm{RMS}={90}^\circ$の直角二等辺三角形のとき,$r$と$s$の値を求めよ.
(4)$\angle \mathrm{MRS}$はつねに鋭角であることを示せ.
香川大学 国立 香川大学 2015年 第1問
図のような一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とする.$\mathrm{M}$を辺$\mathrm{OC}$の中点,$\mathrm{R}$,$\mathrm{S}$をそれぞれ辺$\mathrm{AE}$,辺$\mathrm{GF}$上の点とする.$\mathrm{AR}=r$,$\mathrm{GS}=s$,$\angle \mathrm{RMS}=\theta$とおくとき,次の問に答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{MR}}$,$\overrightarrow{\mathrm{MS}}$を,それぞれ$r,\ s,\ \overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$を用いて表せ.
(2)$\cos \theta$を$r,\ s$を用いて表せ.
(3)$\triangle \mathrm{MRS}$が$\angle \mathrm{RMS}={90}^\circ$の直角二等辺三角形のとき,$r$と$s$の値を求めよ.
(4)$\angle \mathrm{MRS}$はつねに鋭角であることを示せ.
香川大学 国立 香川大学 2015年 第1問
図のような一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とする.$\mathrm{M}$を辺$\mathrm{OC}$の中点,$\mathrm{R}$,$\mathrm{S}$をそれぞれ辺$\mathrm{AE}$,辺$\mathrm{GF}$上の点とする.$\mathrm{AR}=r$,$\mathrm{GS}=s$,$\angle \mathrm{RMS}=\theta$とおくとき,次の問に答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{MR}}$,$\overrightarrow{\mathrm{MS}}$を,それぞれ$r,\ s,\ \overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$を用いて表せ.
(2)$\cos \theta$を$r,\ s$を用いて表せ.
(3)$\triangle \mathrm{MRS}$が$\angle \mathrm{RMS}={90}^\circ$の直角二等辺三角形のとき,$r$と$s$の値を求めよ.
(4)$\angle \mathrm{MRS}$はつねに鋭角であることを示せ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。