タグ「三角比」の検索結果

28ページ目:全1924問中271問~280問を表示)
埼玉大学 国立 埼玉大学 2015年 第4問
関数$\displaystyle f(\theta)=\frac{\cos \theta \sin \theta}{\cos^4 \theta+\sin^4 \theta}$について,次の問いに答えよ.

(1)$t=\tan^2 \theta$と変数変換することにより,$\displaystyle \int_0^{\frac{\pi}{4}} f(\theta) \, d\theta$を求めよ.
(2)$f(\theta)$の最大値および最小値を求めよ.
東京大学 国立 東京大学 2015年 第6問
$n$を正の整数とする.以下の問いに答えよ.

(1)関数$g(x)$を次のように定める.
\[ g(x)=\left\{ \begin{array}{ll}
\displaystyle\frac{\cos (\pi x)+1}{2} & (|x| \leqq 1 \text{のとき}) \\
0 & (|x|>1 \text{のとき})
\end{array} \right. \]
$f(x)$を連続な関数とし,$p,\ q$を実数とする.$\displaystyle |x| \leqq \frac{1}{n}$をみたす$x$に対して$p \leqq f(x) \leqq q$が成り立つとき,次の不等式を示せ.
\[ p \leqq n \int_{-1}^1 g(nx)f(x) \, dx \leqq q \]
(2)関数$h(x)$を次のように定める.
\[ h(x)=\left\{ \begin{array}{ll}
\displaystyle -\frac{\pi}{2} \sin (\pi x) & (|x| \leqq 1 \text{のとき}) \\
0 & (|x|>1 \text{のとき})
\end{array} \right. \]
このとき,次の極限を求めよ.
\[ \lim_{n \to \infty} n^2 \int_{-1}^1 h(nx) \log (1+e^{x+1}) \, dx \]
広島大学 国立 広島大学 2015年 第1問
座標平面上の点$\mathrm{P}(1,\ 1)$を中心とし,原点$\mathrm{O}$を通る円を$C_1$とする.$k$を正の定数として,曲線$\displaystyle y=\frac{k}{x} (x>0)$を$C_2$とする.$C_1$と$C_2$は$2$点で交わるとし,その交点を$\mathrm{Q}$,$\mathrm{R}$とするとき,直線$\mathrm{PQ}$は$x$軸に平行であるとする.点$\mathrm{Q}$の$x$座標を$q$とし,点$\mathrm{R}$の$x$座標を$r$とする.次の問いに答えよ.

(1)$k,\ q,\ r$の値を求めよ.
(2)曲線$C_2$と線分$\mathrm{OQ}$,$\mathrm{OR}$で囲まれた部分の面積$S$を求めよ.
(3)$x=1+\sqrt{2} \sin \theta$とおくことにより,定積分$\displaystyle \int_r^q \sqrt{2-(x-1)^2} \, dx$の値を求めよ.
(4)円$C_1$の原点$\mathrm{O}$を含まない弧$\mathrm{QR}$と曲線$C_2$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
一橋大学 国立 一橋大学 2015年 第5問
次の$\tocichi$,$\tocni$のいずれか一方を選択して解答せよ.

\mon[$\tocichi$] 数列$\{a_k\}$を$\displaystyle a_k=k+\cos \left( \frac{k\pi}{6} \right)$で定める.$n$を正の整数とする.

\mon[$(1)$] $\displaystyle \sum_{k=1}^{12n} a_k$を求めよ.
\mon[$(2)$] $\displaystyle \sum_{k=1}^{12n} {a_k}^2$を求めよ.

\mon[$\tocni$] $a,\ b,\ c$は異なる$3$つの正の整数とする.次のデータは$2$つの科目$\mathrm{X}$と$\mathrm{Y}$の試験を受けた$10$人の得点をまとめたものである.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
& $①$ & $②$ & $③$ & $④$ & $⑤$ & $⑥$ & $④chi$ & $\maruhachi$ & $\marukyu$ & $\marujyu$ \\ \hline
科目$\mathrm{X}$の得点 & $a$ & $c$ & $a$ & $b$ & $b$ & $a$ & $c$ & $c$ & $b$ & $c$ \\ \hline
科目$\mathrm{Y}$の得点 & $a$ & $b$ & $b$ & $b$ & $a$ & $a$ & $b$ & $a$ & $b$ & $a$ \\ \hline
\end{tabular}

科目$\mathrm{X}$の得点の平均値と科目$\mathrm{Y}$の得点の平均値とは等しいとする.
\mon[$(1)$] 科目$\mathrm{X}$の得点の分散を$s_{\mathrm{X}}^2$,科目$\mathrm{Y}$の得点の分散を$s_{\mathrm{Y}}^2$とする.$\displaystyle \frac{s_{\mathrm{X}}^2}{s_{\mathrm{Y}}^2}$を求めよ.
\mon[$(2)$] 科目$\mathrm{X}$の得点と科目$\mathrm{Y}$の得点の相関係数を,四捨五入して小数第$1$位まで求めよ.
\mon[$(3)$] 科目$\mathrm{X}$の得点の中央値が$65$,科目$\mathrm{Y}$の得点の標準偏差が$11$であるとき,$a,\ b,\ c$の組を求めよ.
神戸大学 国立 神戸大学 2015年 第2問
座標平面上の楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$C$とする.$a>2$,$0<\theta<\pi$とし,$x$軸上の点$\mathrm{A}(a,\ 0)$と楕円$C$上の点$\mathrm{P}(2 \cos \theta,\ \sin \theta)$をとる.原点を$\mathrm{O}$とし,直線$\mathrm{AP}$と$y$軸との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$を通り$x$軸に平行な直線と,直線$\mathrm{OP}$との交点を$\mathrm{R}$とする.以下の問に答えよ.

(1)点$\mathrm{R}$の座標を求めよ.
(2)$(1)$で求めた点$\mathrm{R}$の$y$座標を$f(\theta)$とする.このとき,$0<\theta<\pi$における$f(\theta)$の最大値を求めよ.
(3)原点$\mathrm{O}$と点$\mathrm{R}$の距離の$2$乗を$g(\theta)$とする.このとき,$0<\theta<\pi$における$g(\theta)$の最小値を求めよ.
旭川医科大学 国立 旭川医科大学 2015年 第2問
$n$を正の整数とする.$2n \pi \leqq x \leqq (2n+1) \pi$の範囲で関数$f(x)=x \sin x$を考える.関数$f(x)$が極大値をとる$x$を$a_n$とし,曲線$y=f(x)$の変曲点を$(b_n,\ f(b_n))$とする.次の問いに答えよ.

(1)$a_n$と$b_n$はそれぞれ唯$1$つあって,$\displaystyle 2n \pi<b_n<2n \pi+\frac{\pi}{2}<a_n<(2n+1) \pi$を満たすことを示せ.
(2)以下の極限を求めよ.
\[ (1) \ \lim_{n \to \infty}(a_n-2n \pi) \qquad (2) \ \lim_{n \to \infty}(b_n-2n \pi) \qquad (3) \ \lim_{n \to \infty}f(b_n) \]
(3)曲線$y=f(x) (2n \pi \leqq x \leqq (2n+1) \pi)$と$x$軸とで囲まれた図形を,$3$つの直線$x=b_n$,$\displaystyle x=2n \pi+\frac{\pi}{2}$,$x=a_n$によって$4$つの部分に分ける.その面積を左から順に$S_1$,$S_2$,$S_3$,$S_4$とするとき,$(S_3+S_4)-(S_1+S_2)$の値を求めよ.
(4)以下の極限を求めよ.
\[ (1) \ \lim_{n \to \infty}S_1 \qquad (2) \ \lim_{n \to \infty}S_3 \qquad (3) \ \lim_{n \to \infty}(S_4-S_2) \]
旭川医科大学 国立 旭川医科大学 2015年 第3問
曲線$C:y=\sin^2 x$について,$C$上の点$\displaystyle (t,\ \sin^2 t) \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における$C$の接線と直線$x=a$との交点を$\mathrm{P}$とする.ただし,$a$は$\displaystyle 0 \leqq a \leqq \frac{\pi}{2}$を満たす定数とする.このとき,次の問いに答えよ.

(1)点$\mathrm{P}$の$y$座標を$f(t)$とおくとき,$f(t)$を求めよ.
(2)関数$f(t)$の増減を調べ,その最大値と最小値を求めよ.
(3)$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,点$(t,\ \sin^2 t)$における$C$の接線が通るすべての点のうち,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$となるものの範囲を$xy$平面に図示せよ.
名古屋工業大学 国立 名古屋工業大学 2015年 第3問
次の$\tocichi$,$\tocni$に答えよ.

\mon[$\tocichi$] 次の$5$つの定積分を求めよ.($\tocni \ (4)$で用いる.)

$\displaystyle I_1=\int_0^\pi x \sin x \, dx,\quad I_2=\int_0^\pi x^2 \cos x \, dx,\quad I_3=\int_0^\pi \sin^2 x \, dx$

$\displaystyle I_4=\int_0^\pi x \cos x \sin x \, dx,\quad I_5=\int_0^\pi \sin^2 x \cos x \, dx$

\mon[$\tocni$] 関数$y=\sin x$のグラフを曲線$C$とする.$C$上の点$\mathrm{O}(0,\ 0)$における接線を$\ell_1$,点$\mathrm{A}(\pi,\ 0)$における接線を$\ell_2$とする.
$\ell_1$と$\ell_2$の交点を$\mathrm{B}$,$C$上の点$\mathrm{P}(t,\ \sin t) (0 \leqq t \leqq \pi)$から$\ell_1$に下ろした垂線を$\mathrm{PQ}$とする.ただし,$t=0$のときは$\mathrm{Q}=\mathrm{P}$とする.$\mathrm{OQ}=s$とおく.

\mon[$(1)$] $\angle \mathrm{OBA}$の大きさを求めよ.
\mon[$(2)$] $s$を$t$を用いて表せ.
\mon[$(3)$] 線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
\mon[$(4)$] 曲線$C$と$2$直線$\ell_1$,$\ell_2$で囲まれた部分を,直線$\ell_1$の周りに$1$回転させてできる立体の体積$V$を求めよ.
東北大学 国立 東北大学 2015年 第4問
$a>0$を実数とする.$n=1,\ 2,\ 3,\ \cdots$に対し,座標平面の$3$点
\[ (2n\pi,\ 0),\quad \left( \left(2n+\frac{1}{2} \right) \pi,\ \frac{1}{{\left\{ \left( 2n+\displaystyle\frac{1}{2} \right)\pi \right\}}^a} \right),\quad ((2n+1)\pi,\ 0) \]
を頂点とする三角形の面積を$A_n$とし,
\[ B_n=\int_{2n\pi}^{(2n+1)\pi} \frac{\sin x}{x^a} \, dx,\qquad C_n=\int_{2n\pi}^{(2n+1)\pi} \frac{\sin^2 x}{x^a} \, dx \]
とおく.

(1)$n=1,\ 2,\ 3,\ \cdots$に対し,次の不等式が成り立つことを示せ.
\[ \frac{2}{\{(2n+1)\pi\}^a} \leqq B_n \leqq \frac{2}{(2n\pi)^a} \]
(2)極限値$\displaystyle \lim_{n \to \infty} \frac{A_n}{B_n}$を求めよ.
(3)極限値$\displaystyle \lim_{n \to \infty} \frac{A_n}{C_n}$を求めよ.
新潟大学 国立 新潟大学 2015年 第5問
自然数$n$に対して,関数$f_n(x)$を次のように定める.
\[ \begin{array}{ll}
f_1(x)=1-\displaystyle\frac{x^2}{2} \phantom{\frac{[ ]}{2}} & \\
f_n(x)=\int_0^x f_{n-1}(t) \, dt \phantom{\frac{[ ]}{2}} & (n \text{が偶数のとき}) \\
f_n(x)=1-\int_0^x f_{n-1}(t) \, dt \phantom{\frac{[ ]}{2}} & (n \text{が}3 \text{以上の奇数のとき})
\end{array} \]
次の問いに答えよ.ただし必要があれば,$0<x \leqq 1$のとき$\displaystyle x-\frac{x^3}{3!}<\sin x<x$が成り立つことを用いてよい.

(1)関数$f_2(x),\ f_3(x)$を求めよ.
(2)$0 \leqq x \leqq 1$のとき,次の不等式が成り立つことを示せ.
\[ -\frac{x^4}{4!} \leqq f_1(x)-\cos x \leqq \frac{x^4}{4!} \]
(3)$0 \leqq x \leqq 1$のとき,次の不等式
\[ -\frac{x^{2m+2}}{(2m+2)!} \leqq f_{2m-1}(x)-\cos x \leqq \frac{x^{2m+2}}{(2m+2)!} \]
がすべての自然数$m$に対して成り立つことを示せ.
(4)極限値$\displaystyle \lim_{m \to \infty} f_{2m-1} \left( \frac{\pi}{6} \right)$を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。