タグ「三角比」の検索結果

182ページ目:全1924問中1811問~1820問を表示)
千葉大学 国立 千葉大学 2010年 第9問
$a$を1より大きい実数とし,座標平面上に,点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 0)$をとる.曲線$\displaystyle y=\frac{1}{x}$上の点$\displaystyle \mathrm{P} \left( p,\ \frac{1}{p} \right)$と,曲線$\displaystyle y=\frac{a}{x}$上の点$\displaystyle \mathrm{Q} \left( q,\ \frac{a}{q} \right)$が,3条件

(1)$p>0,\ q>0$
(2)$\angle \mathrm{AOP}<\angle \mathrm{AOQ}$
(3)$\triangle \mathrm{OPQ}$の面積は3に等しい

をみたしながら動くとき,$\tan \angle \mathrm{POQ}$の最大値が$\displaystyle \frac{3}{4}$となるような$a$の値を求めよ.
九州工業大学 国立 九州工業大学 2010年 第3問
点$\mathrm{O}$を原点,点$\mathrm{P}$を楕円$\displaystyle \frac{x^2}{16}+\frac{(y-3)^2}{25}=1$上の点とする.$x$軸の正の部分を始線として動径$\mathrm{OP}$の表す角を$\theta \ (0 \leqq \theta<2\pi)$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$の$y$座標を$\displaystyle \frac{a+b \sin \theta}{c+d \sin \theta}$($a,\ b,\ c,\ d$は実数)の形で表せ.
(2)点$\mathrm{P}$における楕円の接線を$\ell$とする.直線$\ell$の方程式を求めよ.
(3)点$\mathrm{A}$の座標を$(0,\ 6)$とする.点$\mathrm{A}$を(2)の直線$\ell$に関して対称移動した点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
九州工業大学 国立 九州工業大学 2010年 第2問
実数$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$に対して行列$A$を
\[ A=\left( \begin{array}{rr}
\cos 2\theta & \sin 2\theta \\
-\sin 2\theta & \cos 2\theta
\end{array} \right) \]
とする.また,実数$k \ (k>0)$に対して,$x,\ y$は
\[ \left( \begin{array}{c}
x \\
y
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
0 \\
k
\end{array} \right) \]
を満たす.そして,$x,\ y,\ k$を用いて座標平面上の2点$\mathrm{P}(x,\ y)$,$\mathrm{Q}(0,\ k)$を定める.原点を$\mathrm{O}$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$k,\ \tan \theta$を用いて表せ.
(2)$\angle \mathrm{OPQ}$を$\theta$を用いて表せ.
(3)$\triangle \mathrm{OPQ}$を$x$軸の周りに1回転させてできる立体の体積$V(\theta)$を求めよ.
(4)(3)で求めた$V(\theta)$について,$\displaystyle \lim_{\theta \to +0}\frac{\theta}{2\pi}V(\theta)$を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第4問
次の問いに答えよ.

(1)関数$\displaystyle y=\log_{\frac{1}{3}} \left( \frac{x}{3} \right) \cdot \log_{\frac{1}{3}}(3x)$を考える.

(i) $t=\log_{\frac{1}{3}}x$とおくとき,$y$を$t$を用いて表せ.
(ii) $\displaystyle \frac{1}{9} \leqq x \leqq 3$のとき,$y$の最大値と最小値を求めよ.

(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,関数$y=2 \sin^2 x-\sin x \cos x+3 \cos^2 x$の最大値と最小値を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第5問
関数$\displaystyle f(x)=\int_\alpha^x (t-\alpha)\cos (x-t) \, dt$を考える.ただし,$\alpha$は定数とする.次の問いに答えよ.

(1)$x$を定数とみて,$u=x-t$とおく.置換積分法を用いて,
\[ \int_\alpha^x (t-\alpha)\cos (x-t) \, dt=\int_0^{x-\alpha}(x-\alpha-u)\cos u \, du \]
となることを示せ.
(2)導関数$f^\prime(x)$を求めよ.
(3)関数$f(x)$を求めよ.
(4)曲線$y=f(x) \ (\alpha \leqq x \leqq \alpha+2\pi)$と$x$軸で囲まれた部分を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
京都教育大学 国立 京都教育大学 2010年 第6問
次の問に答えよ.

(1)次の定積分の値を計算せよ.
\[ \int_0^{\frac{1}{2}} \frac{1}{1-x^2} \, dx \]
(2)$0<x<\pi$とする.関数$\displaystyle y=\frac{1}{\sin x}$の極値を調べグラフの概形をかけ.
(3)$\displaystyle y=\frac{1}{\sin x}$が表す曲線と3直線$\displaystyle y=\frac{1}{2},\ x=\frac{\pi}{3},\ x=\frac{\pi}{2}$で囲まれた図形の面積を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第1問
次の問いに答えよ.

(1)円$x^2+y^2=1$と放物線$y=x^2+5$との共通の接線のうち,円と第$1$象限で接する接線の方程式を求めよ.
(2)$n \geqq 2$であるような自然数$n$に対して
\[ 1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\cdots +(n-1) \cdot n \cdot (n+1)=(1+2+3+\cdots +n)(2+3+\cdots +n) \]
が成り立つことを示せ.
(3)関数$\displaystyle f(x)=\frac{\cos x}{\sqrt{1+\cos^2 x}} \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{3}{2}\pi \right)$の増減を調べ,最大値と最小値を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第6問
$y=2(\sin^3x-\cos^3x)-6 \sin x \cos x(\sin x-\cos x-1) \ (0 \leqq x \leqq \pi)$に対して,次の問いに答えよ.

(1)$t=\sin x-\cos x$とおくとき,$t$の範囲を求めよ.
(2)$y$を$t$で表せ.
(3)$y$の最大値と最小値を求めよ.
山梨大学 国立 山梨大学 2010年 第5問
関数$f(x)$を$f(x)=\log (x+1)+\sin ax$と定義する.ただし,$x \geqq 0$であり,$a$は正の定数である.

(1)$f(e-1)=0$を満たす最も小さい$a$の値を求めよ.
(2)(1)で求めた$a$の値を使って,定積分$\displaystyle \int_0^{\frac{2(e-1)}{3}}f(x) \, dx$を求めよ.
(3)$\displaystyle a=\frac{2\pi}{e-1}$とするとき,方程式$f(x)=0$は$\displaystyle 0<x<\frac{3(e-1)}{4}$の範囲に解を持つことを証明せよ.
山梨大学 国立 山梨大学 2010年 第6問
行列$A=\left( \begin{array}{cc}
\displaystyle\frac{3}{2} & -\displaystyle\frac{\sqrt{3}}{2} \\
\displaystyle\frac{\sqrt{3}}{2} & \displaystyle\frac{3}{2}
\end{array} \right)$と点$\mathrm{O}(0,\ 0)$,点$\mathrm{X}_0(1,\ 0)$がある.行列$A$で表される移動によって点$\mathrm{X}_0$は点$\mathrm{X}_1$へ移り,行列$A^2$で表される移動によって点$\mathrm{X}_0$は点$\mathrm{X}_2$へ移るものとする.以下同様に正の整数$n$について,行列$A^n$で表される移動によって点$\mathrm{X}_0$は点$\mathrm{X}_n$へ移るものとする.

(1)行列$A$は,$\alpha>0$と$\displaystyle 0<\theta<\frac{\pi}{2}$を使って$A=\alpha \left( \begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$と変形できる.$\alpha$と$\theta$の値を求めよ.
(2)$\triangle \mathrm{OX}_0 \mathrm{X}_1$の面積$S_1$を求めよ.
(3)四角形$\mathrm{OX}_0 \mathrm{X}_1 \mathrm{X}_2$の面積$S_2$を求めよ.
(4)$1 \leqq n<12$とする.線分$\mathrm{OX}_0$,$\mathrm{X}_0 \mathrm{X}_1$,$\cdots$,$\mathrm{X}_{n-1} \mathrm{X}_n$,$\mathrm{X}_n \mathrm{O}$で囲まれる部分の面積$S_n$を$n$を使って表せ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。