タグ「三角比」の検索結果

181ページ目:全1924問中1801問~1810問を表示)
室蘭工業大学 国立 室蘭工業大学 2010年 第2問
関数$g(x)$は微分可能であるとし,関数$f(x)$を$\displaystyle f(x)=\int_{-\pi}^\pi \{t-g(x)\sin t\}^2 \, dt$と定める.

(1)定積分$\displaystyle \int_{-\pi}^\pi t \sin t \, dt,\ \int_{-\pi}^\pi \sin^2 t \, dt$の値を求めよ.
(2)$f^\prime(x)$を$g(x),\ g^\prime(x)$を用いて表せ.
(3)$g(x)=x^3-3x$であるとき,$f(x)$の極大値を求めよ.
旭川医科大学 国立 旭川医科大学 2010年 第3問
関数$\displaystyle f(x)=\sin x \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right)$の逆関数を$g(x) \ (-1 \leqq t \leqq 1)$とおくとき,次の問いに答えよ.

(1)$-1<x<1$のとき,$g^\prime(x)$を$x$を用いて表せ.
(2)曲線$y=\sin^2 x \ (0 \leqq x \leqq \pi)$と直線$y=t \ (0<t<1)$の2つの交点の$x$座標を,それぞれ$\alpha,\ \beta \ (\alpha<\beta)$とおくとき,$\displaystyle \int_\alpha^\beta \sin^2 x \, dx$を$t$と関数$g$を用いて表せ.
(3)$\displaystyle h(t)=\frac{2}{\pi}\int_\alpha^\beta \sin^2 x \, dx-\sqrt{1-t^2} \ (0<t<1)$とおくとき,$h(t)<0 \ (0<t<1)$を示し$h(t)$を最小にする$t$の値を求めよ.
旭川医科大学 国立 旭川医科大学 2010年 第4問
次の問いに答えよ.

(1)関数$\displaystyle f(x)=\frac{1-\cos x}{x^2}$について,次の問いに答えよ.

$(ⅰ)$ $\displaystyle \lim_{x \to 0}f(x)$を求めよ.
$(ⅱ)$ 区間$0<x<\pi$で$f(x)$の増加減少を調べよ.

(2)三角形ABCにおいて,$\angle \text{A},\ \angle \text{B}$の大きさをそれぞれ$\alpha,\ \beta$とし,それらの角の対辺の長さをそれぞれ$a,\ b$で表す.$0<\alpha<\beta<\pi$のとき,次の不等式が成り立つことを証明せよ.
\[ \frac{b^2}{a^2}<\frac{1-\cos \beta}{1-\cos \alpha}<\frac{\beta^2}{\alpha^2} \]
帯広畜産大学 国立 帯広畜産大学 2010年 第1問
自然数$n$に対して,$\{a_n\}$は初項$a$,一般項$a_n$の数列であり,$\{b_n\}$ \\
は初項$b$,一般項$b_n$の数列である.座標平面上の点$\mathrm{P}_n(a_n,\ b_n)$, \\
点$\mathrm{P}_{n+1}(a_{n+1},\ b_{n+1})$と点$\mathrm{Q}_n(a_{n+1},\ b_n)$の座標は数列$\{a_n\}$と \\
$\{b_n\}$によって与えられる.また,点$\mathrm{P}_n$と点$\mathrm{P}_{n+1}$を通る直線の傾 \\
き$g_n$と$\triangle \mathrm{P}_n \mathrm{P}_{n+1} \mathrm{Q}_n$の面積$h_n$は,それぞれ$g_n=cb_n,\ h_n=dg_n$で定義され,各点の位置関係は右図のようになる.ここで,$h_n$を一般項とする数列を$\{h_n\}$で表し,また,$d>0$,任意の$n$について$a_{n+1}>a_n,\ h_n>0$と仮定する.
\img{3_2148_2010_1}{50}


(1)数列$\{a_n\},\ \{b_n\}$と$\{h_n\}$の中から等差数列と等比数列を見つけ,それぞれの公差または公比を$c$と$d$で表しなさい.
(2)数列$\{a_n\}$と数列$\{b_n\}$について,それぞれの一般項と,初項から第$n$項までの和を$a,\ b,\ c,\ d$および$n$で表しなさい.
(3)$\displaystyle d=\frac{1}{2}$のとき,$c$の値の範囲を求めなさい.
(4)$\displaystyle b=1,\ d=\frac{1}{2},\ 4h_2-6h_1-1=0$のとき,$c$の値を求めなさい.
(5)$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$と$\mathrm{Q}_1$の各点を用いて,$\alpha=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_2$,$\beta=\angle \mathrm{P}_2 \mathrm{P}_1 \mathrm{P}_3$,$\theta=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_3$と定義する.$\displaystyle b=1,\ c=\frac{2}{3},\ d=\frac{1}{2}$のとき,$\tan \alpha,\ \tan \beta$と$\tan \theta$を求めなさい.
旭川医科大学 国立 旭川医科大学 2010年 第2問
$\alpha>1$とする.$\displaystyle 0<t<\frac{\pi}{\alpha-1}$となる$t$に対して,$xy$平面上の点P$(\cos t,\ \sin t)$と点Q$(\cos \alpha t,\ \sin \alpha t)$を通る直線を$\ell_t$とする.次の問いに答えよ.

(1)直線$\ell_t$の方程式を
\[ f(t)x+g(t)y=h(t) \]
とする.$h(t)=-\sin (\alpha-1)t$のとき,$f(t),\ g(t)$を求めよ.
(2)行列$\left( \begin{array}{cc}
f(t) & g(t) \\
f^\prime(t) & g^\prime(t)
\end{array} \right)$は逆行列をもつことを示せ.
(3)$x(t),\ y(t)$を
\[ \left( \begin{array}{cc}
f(t) & g(t) \\
f^\prime(t) & g^\prime(t)
\end{array} \right) \left( \begin{array}{c}
x(t) \\
y(t)
\end{array} \right)=\left( \begin{array}{c}
h(t) \\
h^\prime(t)
\end{array} \right) \]
を満たすものとし,点R$(x(t),\ y(t))$が描く曲線を$C$とする.このとき,点Rは直線$\ell_t$上にあり,曲線$C$の点Rにおける接線は$\ell_t$と一致することを示せ.
小樽商科大学 国立 小樽商科大学 2010年 第3問
次の[ ]の中を適当に補いなさい.

(1)$4 \cos 15^\circ(1-\sin^2 15^\circ-\sin 15^\circ)-3(\sin 15^\circ+1) \cos 15^\circ=[ ]$.
(2)100人の学生を対象に100点満点の試験を行った結果,平均点が75点,最高点が95点,最低点が25点であった.平均点以上の学生数を$M$とし,$M$の最小値を求めると[ ].ただし,点数は全て自然数とする.
(3)関数$y=x^3-3x$のグラフに,直線$y=-1$上のある点から傾きがそれぞれ$k,\ -k \ (k>0)$の2本の接線が引けるとき,その2本の接線の接点の$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.このとき,$A=\alpha^2+\beta^2,\ B=\alpha^3+\beta^3$の値を計算すると$(A,\ B)=[ ]$.
帯広畜産大学 国立 帯広畜産大学 2010年 第2問
関数$f(t)=\sin^2 t+2x \cos t$の$t$に関する最大値$M(x)$を$x$の関数とする.

(1)$-1<x<1$のとき,$M(x)$を$x$を用いて表し,曲線$y=M(x)$の概形を描きなさい.
(2)曲線$y=G(x)=3x^2$と$y=M(x)$で囲まれる図形の面積を求めなさい.
(3)直線$y=x-2$上の点$\mathrm{Q}$から,曲線$y=G(x)$に引いた$2$本の接線$L_1,\ L_2$の接点の$x$座標をそれぞれ$a,\ b$とする.点$\mathrm{Q}$の座標を$a,\ b$を用いて表しなさい.
(4)$2$本の接線$L_1,\ L_2$と曲線$y=G(x)$で囲まれる図形の面積の最小値を求めなさい.
滋賀医科大学 国立 滋賀医科大学 2010年 第3問
次の問いに答えよ.

(1)$a$を実数の定数,$f(x)$をすべての点で微分可能な関数とする.このとき次の等式を示せ.
\[ f^\prime(x)+af(x)=e^{-ax}(e^{ax}f(x))^\prime \]
ただし,$^\prime$は$x$についての微分を表す.
(2)(1)の等式を利用して,次の式を満たす関数$f(x)$で,$f(0)=0$となるものを求めよ.
\[ f^\prime(x)+2f(x)=\cos x \]
(3)(2)で求めた関数$f(x)$に対して,数列$\displaystyle \left\{ |f(n \pi)| \right\} \ (n=1,\ 2,\ 3,\ \cdots)$の極限値
\[ \lim_{n \to \infty} |f(n \pi)| \]
を求めよ.
京都教育大学 国立 京都教育大学 2010年 第1問
$\triangle \mathrm{ABC}$の$3$つの角の大きさを$A,\ B,\ C$で表し,また,それらの角の対辺の長さをそれぞれ$a,\ b,\ c$で表す.このとき,$\displaystyle \frac{\cos B}{b}=\frac{\cos C}{c}$が成り立つ$\triangle \mathrm{ABC}$はどのような三角形であるか.
千葉大学 国立 千葉大学 2010年 第8問
$a,\ b$は実数とする.関数$f(x)$は,
\[ f(x)=a \sin x+b \cos x+\int_{-\pi}^\pi f(t) \cos t \, dt \]
をみたし,かつ,$-\pi \leqq x \leqq \pi$における最大値は$2 \pi$である.このとき,
\[ \int_{-\pi}^\pi \{f(x)\}^2 \, dx \]
を最小にする$a,\ b$の値と,その最小値を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。