タグ「三角比」の検索結果

180ページ目:全1924問中1791問~1800問を表示)
大阪教育大学 国立 大阪教育大学 2010年 第2問
自然数$n$に対して,
\[ I_n=\int_0^{\frac{\pi}{2}}\sin^n x \, dx \]
とおく.次の問に答えよ.

(1)定積分$I_1,\ I_2,\ I_3$を求めよ.
(2)次の不等式を証明せよ.
\[ I_n \geqq I_{n+1}\]
(3)次の漸化式が成り立つことを証明せよ.
\[ I_{n+2}=\frac{n+1}{n+2}I_n \]
(4)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{I_{2n+1}}{I_{2n}} \]
茨城大学 国立 茨城大学 2010年 第1問
$\triangle$ABCにおいて$\angle \text{A},\ \angle \text{B},\ \angle \text{C}$の大きさと対辺の長さをそれぞれ$A,\ B,\ C$および$a,\ b,\ c$で表す.$\triangle$ABCの面積を$S$とするとき,以下の各問に答えよ.

(1)$\displaystyle \frac{\sin A}{\sin B \sin C}=\frac{\cos B}{\sin B}+\frac{\cos C}{\sin C}$を示せ.
(2)$\displaystyle \sin A,\ \sin B,\ \sin C,\ \frac{\sin A}{\sin B \sin C}$を$a,\ b,\ c,\ S$で表せ.
(3)$a \geqq b \geqq c$ならば,$\displaystyle \frac{\cos A}{\sin A} \leqq \frac{\cos B}{\sin B} \leqq \frac{\cos C}{\sin C}$となることを示せ.
茨城大学 国立 茨城大学 2010年 第3問
$\triangle \mathrm{ABC}$において$\angle \mathrm{A},\ \angle \mathrm{B},\ \angle \mathrm{C}$の大きさと対辺の長さをそれぞれ$A,\ B,\ C$および$a,\ b,\ c$で表す.$\triangle \mathrm{ABC}$の面積を$S$とし,$3$頂点を通る円の半径を$R$とする.$a \geqq b \geqq c$とするとき以下の各問に答えよ.

(1)$\sin A \geqq \sin B \geqq \sin C$を示せ.
(2)$S=2R^2 \sin A \sin B \sin C$を示せ.
(3)$\displaystyle \frac{a^2}{S},\ \frac{b^2}{S},\ \frac{c^2}{S}$のそれぞれを$\displaystyle \frac{\cos A}{\sin A},\ \frac{\cos B}{\sin B},\ \frac{\cos C}{\sin C}$を用いて表せ.
(4)$\displaystyle \frac{\cos A}{\sin A} \leqq \frac{\cos B}{\sin B} \leqq \frac{\cos C}{\sin C}$を示せ.
(5)$A \geqq B \geqq C$を示せ.
(6)$\displaystyle \frac{a^2}{S} \geqq \frac{4}{\sqrt{3}}$を示せ.
(7)$\triangle \mathrm{ABC}$が正三角形であるためには$\displaystyle \frac{a^2}{S} = \frac{4}{\sqrt{3}}$であることが必要十分であることを示せ.
九州工業大学 国立 九州工業大学 2010年 第3問
次に答えよ.

(1)$0 \leqq x \leqq \pi$の範囲において,$\displaystyle \sin^2 x=\sin^2 \left( x+\frac{\pi}{3} \right)$を解け.
(2)曲線$y=\sin^2 x \ (0 \leqq x \leqq \pi)$と曲線$\displaystyle y=\sin^2 \left( x+\frac{\pi}{3} \right) \ (0 \leqq x \leqq \pi)$で囲まれた図形の面積$S$を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第2問
次の各問いに答えよ.

(1)直線$\ell:y=ax+b$が原点を中心とする半径$1$の円と点$\displaystyle \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$で接しているとする.また,直線$\ell$は放物線$C:y=x^2-\sqrt{3}x+c$とも接しているとする.このとき,次の各問いに答えよ.

\mon[(a)] 定数$a,\ b$の値を求めよ.
\mon[(b)] 放物線$C$と直線$\ell$との接点の座標および定数$c$の値を求めよ.
\mon[(c)] 放物線$C$と直線$\ell$および$y$軸とで囲まれた図形の面積を求めよ.

(2)$0 \leqq \theta \leqq \pi$の範囲で,
\[ 5 \sin^2 \theta+14 \cos \theta-13 \geqq 0 \]
を満たす$\theta$の中で最大のものを$\alpha$とするとき,$\cos \alpha$と$\tan 2\alpha$の値を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第2問
次の各問いに答えよ.

(1)直線$\ell:y=ax+b$が原点を中心とする半径1の円と点$\displaystyle \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$で接しているとする.また,直線$\ell$は放物線$C:y=x^2-\sqrt{3}x+c$とも接しているとする.このとき,次の各問いに答えよ.

\mon[(a)] 定数$a,\ b$の値を求めよ.
\mon[(b)] 放物線$C$と直線$\ell$との接点の座標および定数$c$の値を求めよ.
\mon[(c)] 放物線$C$と直線$\ell$および$y$軸とで囲まれた図形の面積を求めよ.

(2)$0 \leqq \theta \leqq \pi$の範囲で,
\[ 5 \sin^2 \theta+14 \cos \theta-13 \geqq 0 \]
を満たす$\theta$の中で最大のものを$\alpha$とするとき,$\cos \alpha$と$\tan 2\alpha$の値を求めよ.
防衛大学校 国立 防衛大学校 2010年 第2問
関数$f(x)=3 \sin x+4 \cos x$について,次の問に答えよ.ただし,$0 \leqq x \leqq \pi$とする.

(1)$f(x)=r \sin (x+\alpha)$と変形したとき,$r$の値と$\cos \alpha,\ \sin \alpha$の値を求めよ.ただし,$r>0,\ -\pi<\alpha \leqq \pi$とする.
(2)$f(x)$の最大値$M$と最小値$m$を求めよ.
(3)(1)の$r$と$\alpha$に対し,$\displaystyle f(x) \geqq \frac{r}{2}$となる$x$の範囲を$\alpha$を用いて表せ.
東京農工大学 国立 東京農工大学 2010年 第3問
座標平面上を運動する点Pの時刻$t$における座標$(x,\ y)$が
\[ x=2 \cos t,\quad y=\sqrt{3} \sin t \]
で与えられているとする.このとき,次の問いに答えよ.

(1)時刻$t$における点Pの速度$\overrightarrow{v}$と速さ$|\overrightarrow{v}|$を求めよ.
(2)$\displaystyle f(t)=-2\cos t+\frac{d}{dt}|\overrightarrow{v}|^2$とおく.$0 \leqq t \leqq 2\pi$における$f(t)$の最大値,最小値を求め,そのときの$t$の値を求めよ.
(3)(2)の関数$f(t)$について定積分$\displaystyle I=\int_0^{\frac{\pi}{2}} \frac{f(t)}{|\overrightarrow{v}|^2} \, dt$を求めよ.
愛知教育大学 国立 愛知教育大学 2010年 第5問
直線$\displaystyle y=\frac{5-x}{4}$上の点$\displaystyle \mathrm{P} \left( p,\ \frac{5-p}{4} \right) \ (p>1)$から曲線$C:y=1-x^2$へ2本の接線$\ell_1,\ \ell_2$を引くことができる.

(1)$\ell_1$と$C$との接点を$\mathrm{A}$,$\ell_2$と$C$との接点を$\mathrm{B}$とし,それぞれの$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.$\beta-\alpha$を$p$の式で表せ.
(2)$\angle \mathrm{APB}=\theta$とする.$\tan \theta$を$p$の式で表せ.ただし$0 \leqq \theta \leqq \pi$とする.
(3)点$\mathrm{P}$が$p>1$の範囲を動くとき,$\theta$が最大となるような点$\mathrm{P}$の座標を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第3問
次の各問いに答えよ.

(1)直線$\ell:y=ax+b$が原点を中心とする半径1の円と点$\displaystyle \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$で接しているとする.また,直線$\ell$は放物線$C:y=x^2-\sqrt{3}x+c$とも接しているとする.このとき,次の各問いに答えよ.

\mon[(a)] 定数$a,\ b$の値を求めよ.
\mon[(b)] 放物線$C$と直線$\ell$との接点の座標および定数$c$の値を求めよ.
\mon[(c)] 放物線$C$と直線$\ell$および$y$軸とで囲まれた図形の面積を求めよ.

(2)$0 \leqq \theta \leqq \pi$の範囲で,
\[ 5 \sin^2 \theta+14 \cos \theta-13 \geqq 0 \]
を満たす$\theta$の中で最大のものを$\alpha$とするとき,$\cos \alpha$と$\tan 2\alpha$の値を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。