タグ「三角比」の検索結果

171ページ目:全1924問中1701問~1710問を表示)
静岡大学 国立 静岡大学 2010年 第4問
連立不等式
\[ x^2+y^2 \leqq 1,\quad x \geqq 0,\quad y \geqq 0 \]
の表す領域を$D$,原点を通る傾き$\displaystyle \tan \theta \ \left( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \right)$の直線を$\ell$とする.$D$を$\ell$のまわりに1回転させてできる回転体の体積を$V$とするとき,次の問いに答えよ.

(1)$\displaystyle -\frac{\pi}{2} < \theta < 0$のとき,$V$を$\theta$を用いて表せ.
(2)$\displaystyle -\frac{\pi}{2} < \theta < \frac{\pi}{2}$のとき,$V$の最大値,最小値を求めよ.
埼玉大学 国立 埼玉大学 2010年 第3問
$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲で,関数
\[ f(x) = \frac{\sin x}{9+16 \sin^2 x} \]
を考える.次の問いに答えよ.

(1)関数$f(x)$の最大値を求めよ.
(2)関数$f(x)$が最大値をとる$x$の値を$a$とするとき,定積分
\[ \int_{a}^{\frac{\pi}{2}} f(x) \, dx \]
を求めよ.
埼玉大学 国立 埼玉大学 2010年 第3問
$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲で,関数
\[ f(x) = \frac{\sin x}{9+16 \sin^2 x} \]
を考える.次の問いに答えよ.

(1)関数$f(x)$の最大値を求めよ.
(2)関数$f(x)$が最大値をとる$x$の値を$a$とするとき,定積分
\[ \int_{a}^{\frac{\pi}{2}} f(x) \, dx \]
を求めよ.
広島大学 国立 広島大学 2010年 第1問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す1次変換$f$によって,点P$_1(1,\ 0)$が点P$_2(0,\ 3)$に移され,点P$_2$が点P$_3$に,点P$_3$が点P$_1(1,\ 0)$にそれぞれ移されるとする.次の問いに答えよ.ただし,$a,\ b,\ c,\ d$は実数である.

(1)行列$A$を求めよ.
(2)自然数$n$に対して$A^n$を求めよ.
(3)O$(0,\ 0)$とする.点P$(\cos \theta,\ \sin \theta)$が$f$によって点Qに移されるとする.$0 \leqq \theta \leqq 2\pi$のとき,ベクトル$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$の内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}$のとり得る値の範囲を求めよ.
九州大学 国立 九州大学 2010年 第3問
$xy$平面上に原点Oを中心とする半径1の円を描き,その上半分を$C$とし,その両端をA$(-1,\ 0)$,B$(1,\ 0)$とする.$C$上の2点N,Mを$\text{NM}=\text{MB}$となるように取る.ただし,$\text{N} \neq \text{B}$とする.このとき,次の問いに答えよ.

(1)$\angle \text{MAB}=\theta$とおき,弦の長さMB及び点Mの座標を$\theta$を用いて表せ.
(2)点Nから$x$軸に下ろした垂線をNPとしたとき,PBを$\theta$を用いて表せ.
(3)$t=\sin \theta$とおく.条件$\text{MB}=\text{PB}$を$t$を用いて表せ.
(4)$\text{MB}=\text{PB}$となるような点Mが唯一あることを示せ.
弘前大学 国立 弘前大学 2010年 第1問
次の問いに答えよ.

(1)$\theta$が$0 \leqq \theta \leqq \pi$をみたすとき,方程式
\[ -\sin 2\theta \cos \theta +2 \cos 2\theta + \sin \theta = 0 \]
を解け.
(2)関数
\[ y = \log_2 (2-x) + \log_{\sqrt{2}} (x+1) \]
の最大値を求めよ.
弘前大学 国立 弘前大学 2010年 第3問
次の問いに答えよ.

(1)$a$を定数とする.関数$y = a(x - \sin 2x) \ (-\pi \leqq x \leqq \pi)$の最大値が2であるような$a$の値を定めよ.
(2)定積分$\displaystyle \int_1^3 \frac{\log (x+1)}{x^2} \, dx$を求めよ.
金沢大学 国立 金沢大学 2010年 第2問
座標空間において,中心がA$(0,\ 0,\ a) \ (a>0)$で半径が$r$の球面
\[ x^2+y^2+(z-a)^2 = r^2 \]
は,点B$(\sqrt{5},\ \sqrt{5},\ a)$と点$(1,\ 0,\ -1)$を通るものとする.次の問いに答えよ.

(1)$r$と$a$の値を求めよ.
(2)点P$(\cos t,\ \sin t,\ -1)$について,ベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AP}}$を求めよ.さらに内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AP}}$を求めよ.
(3)$\triangle$ABPの面積$S$を$t$を用いて表せ.また,$t$が$0 \leqq t \leqq 2\pi$の範囲を動くとき,$S$の最小値と,そのときの$t$の値を求めよ.
東京工業大学 国立 東京工業大学 2010年 第1問
$f(x) = 1- \cos x-x \sin x$とする.

(1)$0<x< \pi$において,$f(x) = 0$は唯一の解を持つことを示せ.
(2)$\displaystyle J =\int_0^{\pi} | f(x) | \, dx$とする.(1)の唯一の解を$\alpha$とするとき,$J$を$\sin \alpha$の式で表せ.
(3)(2)で定義された$J$と$\sqrt{2}$の大小を比較せよ.
横浜国立大学 国立 横浜国立大学 2010年 第1問
実数$a$に対し,関数
\[ f(x) = \cos 2x+4a \cos x+2a+5 \]
を考える.$f(x)$の最小値を$m(a)$とする.次の問いに答えよ.

(1)方程式$f(x) = 0$が解をもたないような$a$の範囲を求めよ.
(2)(1)で求めた範囲の$a$について,$m(a)$を求めよ.
(3)$a$が (1)で求めた範囲を動くとき,$m(a)$の最大値を求めよ.また,そのときの$a$の値を求めよ.
(4)(3)で求めた$a$に対し,$f(x) = m(a)$となる$x$の値を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。