タグ「三角比」の検索結果

170ページ目:全1924問中1691問~1700問を表示)
一橋大学 国立 一橋大学 2010年 第3問
原点をOとする$xyz$空間内で,$x$軸上の点A,$xy$平面上の点B,$z$軸上の点Cを,次をみたすように定める.
\[ \angle \text{OAC} = \angle \text{OBC} = \theta, \quad \angle \text{AOB} = 2\theta, \quad \text{OC}=3 \]
ただし,Aの$x$座標,Bの$y$座標,Cの$z$座標はいずれも正であるとする.さらに,$\triangle$ABC内の点のうち,Oからの距離が最小の点をHとする.また,$t = \tan \theta$とおく.

(1)線分OHの長さを$t$の式で表せ.
(2)Hの$z$座標を$t$の式で表せ.
京都大学 国立 京都大学 2010年 第3問
$a$を正の実数とする.座標平面において曲線$y= \sin x\ (0 \leqq x \leqq \pi)と$x$軸とで囲まれた図形の面積を$S$とし,$曲線$y=\sin x \ \left( 0 \leqq x \leqq \displaystyle\frac{\pi}{2} \right)$,曲線$y=a\cos x\ \left( 0 \leqq x \leqq \displaystyle\frac{\pi}{2} \right)$および$x$軸で囲まれた図形の面積を$T$とする.このとき$S:T=3:1$となるような$a$の値を求めよ.
秋田大学 国立 秋田大学 2010年 第2問
$xy$平面上の四角形OABCにおいて,対角線OBを考え,$\angle \text{AOB}$の二等分線と$\angle \text{OAB}$の二等分線の交点をI,$\angle \text{BOC}$の二等分線と$\angle \text{OCB}$の二等分線の交点を$\text{I}^\prime$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ |\overrightarrow{\mathrm{OA}}|=a,\ |\overrightarrow{\mathrm{OB}}|=b,\ |\overrightarrow{\mathrm{AB}}|=p$とするとき,これらを用いて$\overrightarrow{\mathrm{OI}}$を表せ.
(2)4点O,A,B,CをO$(0,\ 0)$, A$(1,\ 1)$, B$\displaystyle (\frac{3-\sqrt{3}}{2},\ \frac{3+\sqrt{3}}{2})$, C$(-\sqrt{3},\ \sqrt{3})$と定める.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\text{I\,I}^\prime}$がなす角を$\theta$とするとき,$\cos \theta$の値を求めよ.
山形大学 国立 山形大学 2010年 第1問
$xy$平面上に2つの曲線
\[ C_1:y=\sqrt{3}\sin x (0 \leqq x \leqq 2\pi), \quad C_2:y=\cos x (0 \leqq x \leqq 2\pi) \]
がある.このとき以下の問に答えよ.

(1)曲線$C_1,\ C_2$のグラフをかけ.
(2)$C_1$と$C_2$の交点の座標を求めよ.
(3)$C_1$と$C_2$で囲まれた図形の面積$S$を求めよ.
大阪大学 国立 大阪大学 2010年 第2問
$0 < \theta < \displaystyle \frac{\pi}{2}$とする.2つの曲線
\[ C_1:x^2+3y^2=3, \quad C_2:\frac{x^2}{\cos^2 \theta} - \frac{y^2}{\sin^2 \theta} =2 \]
の交点のうち,$x$座標と$y$座標がともに正であるものをPとする.Pにおける$C_1,\ C_2$の接線をそれぞれ$\ell_1,\ \ell_2$とし,$y$軸と$\ell_1,\ \ell_2$の交点をそれぞれQ,Rとする.$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,線分QRの長さの最小値を求めよ.
神戸大学 国立 神戸大学 2010年 第1問
$a$を実数とする.関数$\displaystyle f(x) = ax+ \cos x+ \frac{1}{2} \sin 2x$が極値をもたないように,$a$の値の範囲を定めよ.
北海道大学 国立 北海道大学 2010年 第3問
正の実数$r$と$\displaystyle -\frac{\pi}{2} < \theta < \frac{\pi}{2}$の範囲の実数$\theta$に対して
\[ a_0 = r \cos \theta,\quad b_0 = r \]
とおく.$a_n,\ b_n \ (n = 1,\ 2,\ 3,\ \cdots)$を漸化式
\[ a_n = \frac{a_{n-1} +b_{n-1}}{2},\quad b_n = \sqrt{a_nb_{n-1}} \]
により定める.以下の問いに答えよ.

(1)$\displaystyle \frac{a_1}{b_1},\ \frac{a_2}{b_2}$を$\theta$で表せ.
(2)$\displaystyle \frac{a_n}{b_n}$を$n$と$\theta$で表せ.
(3)$\theta \neq 0$のとき
\[ \lim_{n \to \infty} a_n= \lim_{n \to \infty} b_n = \frac{r\sin \theta}{\theta} \]
を示せ.
神戸大学 国立 神戸大学 2010年 第5問
座標平面において,点P$_n(a_n,\ b_n) \ (n \geqq 1)$を
\begin{eqnarray}
\left(
\begin{array}{c}
a_1 \\
b_1
\end{array}
\right) &=& \left(
\begin{array}{c}
1 \\
0
\end{array}
\right) \nonumber \\
\left(
\begin{array}{c}
a_n \\
b_n
\end{array}
\right) &=& \frac{1}{2} \left(
\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}
\right) \left(
\begin{array}{c}
a_{n-1} \\
b_{n-1}
\end{array}
\right) \quad (n \geqq 2) \nonumber
\end{eqnarray}
で定める.このとき,以下の問に答えよ.

(1)$a_n,\ b_n$を$n$と$\theta$を用いて表せ.
(2)$\displaystyle \theta=\frac{\pi}{3}$のとき,自然数$n$に対して,線分P$_n$P$_{n+1}$の長さ$l_n$を求めよ.
(3)(2)で求めた$l_n$に対して,$\displaystyle \sum_{n=1}^\infty l_n$を求めよ.
東北大学 国立 東北大学 2010年 第5問
$0<t<3$のとき,連立不等式
\[ \left\{
\begin{array}{l}
0 \leqq y \leqq \sin x \\
0 \leqq x \leqq t-y
\end{array}
\right. \]
の表す領域を$x$軸のまわりに回転して得られる立体の体積を$V(t)$とする.$\displaystyle \frac{d}{dt}V(t)=\frac{\pi}{4}$となる$t$と,そのときの$V(t)$の値を求めよ.
静岡大学 国立 静岡大学 2010年 第4問
連立不等式
\[ x^2+y^2 \leqq 1,\quad x \geqq 0,\quad y \geqq 0 \]
の表す領域を$D$,原点を通る傾き$\displaystyle \tan \theta \ \left( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \right)$の直線を$\ell$とする.$D$を$\ell$のまわりに1回転させてできる回転体の体積を$V$とするとき,次の問いに答えよ.

(1)$\displaystyle -\frac{\pi}{2} < \theta < 0$のとき,$V$を$\theta$を用いて表せ.
(2)$\displaystyle -\frac{\pi}{2} < \theta < \frac{\pi}{2}$のとき,$V$の最大値,最小値を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。