タグ「三角比」の検索結果

169ページ目:全1924問中1681問~1690問を表示)
福岡女子大学 公立 福岡女子大学 2011年 第3問
関数$f(x)=e^{\sqrt{3}x} \sin x$について,次の問に答えなさい.

(1)導関数$f^\prime(x)$を求めなさい.
(2)$x$が$0<x<\pi$の範囲にあるとき,関数$f(x)$の極値を与える$x$の値を求めなさい.
(3)定積分$\displaystyle \int_0^\pi e^{\sqrt{3}x} \sin x \, dx$を計算しなさい.
三重県立看護大学 公立 三重県立看護大学 2011年 第1問
次の$(1)$から$(8)$に答えなさい.

(1)$\displaystyle \lim_{x \to 3} \frac{x^2+px+q}{x-3}=7$が成り立つように,$p$と$q$の値を求めなさい.
(2)関数$f(x)=ax^2+bx$について,$\displaystyle \int_{-1}^1 f(x) \, dx=2$および$\displaystyle \int_2^4 f(x) \, dx=50$を満足するように,$a$と$b$の値を求めなさい.
(3)$\displaystyle \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\frac{1}{5 \cdot 6}+\cdots +\frac{1}{n(n+1)}$の和を求めなさい.
(4)$a(b^2-c^2)-b(a^2-c^2)-c(b^2-a^2)$を因数分解しなさい.
(5)学生$10$人が$3$台の車($\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$)に分乗する.$\mathrm{A}$に$5$人,$\mathrm{B}$に$3$人,$\mathrm{C}$に$2$人ずつ分乗する方法は何通りになるか,求めなさい.
(6)$\displaystyle \log_2 \frac{1}{2}+2 \log_2 \sqrt{32}$を簡単にしなさい.
(7)$\sin 75^\circ+\cos 15^\circ$を求めなさい.
(8)$3$つの箱($\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$)に「くじ」が$10$本ずつ入っている.そのうち,「当たり」が$\mathrm{A}$の箱には$2$本,$\mathrm{B}$の箱には$3$本,$\mathrm{C}$の箱には$1$本入っている.それぞれの箱から$1$本ずつ無作為に「くじ」を引いたとき,$3$本とも「はずれ」である確率を求めなさい.
和歌山県立医科大学 公立 和歌山県立医科大学 2011年 第4問
次の問いに答えよ.

(1)関数$\displaystyle y=\frac{\sin^2 x}{x}$の導関数を求めよ.
(2)$n=1,\ 2,\ 3$に対して,$\displaystyle a_n=\int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{x} \, dx$とおく.連立不等式
\[ \frac{\pi}{2} \leqq x\leqq 2\pi,\quad 0 \leqq y \leqq |\displaystyle\frac{\sin x|{x}} \]
によって表される領域の部分を$x$軸のまわりに$1$回転させてできる立体の体積を,$a_1$,$a_2$,$a_3$を用いて表せ.
岐阜薬科大学 公立 岐阜薬科大学 2011年 第1問
$xy$平面上にある長方形$\mathrm{OPRS}$を底面とし,三角形$\mathrm{OST}$,三角形$\mathrm{PRQ}$,四角形$\mathrm{OPQT}$,四角形$\mathrm{RSTQ}$を側面とする五面体$\mathrm{OPQRST}$がある.五面体$\mathrm{OPQRST}$が$\mathrm{OP}=\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{ST}=\mathrm{TO}=1$,$\angle \mathrm{TOP}=\angle \mathrm{OPQ}=\angle \mathrm{PQR}=\angle \mathrm{QRS}=\angle \mathrm{RST}=\angle \mathrm{STO}=\theta (90^\circ<\theta<120^\circ)$をみたしているとき,次の問いに答えよ.ただし,$2$点$\mathrm{O}$,$\mathrm{P}$の座標をそれぞれ$(0,\ 0,\ 0)$,$(1,\ 0,\ 0)$とし,$\displaystyle \sin \frac{\theta}{2}=a$とする.

(1)辺$\mathrm{OS}$の長さを$a$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$a$を用いて表せ.ただし,点$\mathrm{Q}$の$y$座標は正とする.
(3)五面体$\mathrm{OPQRST}$の体積$V$を$a$を用いて表せ.
島根県立大学 公立 島根県立大学 2011年 第1問
次の問いに答えよ.

(1)$f(x)=x^2+bx+c$,$g(x)=x^2+(b+2)x+c$とする.$f(2011)=0$かつ$g(2010)=-1$のとき,$b$と$c$の値を求めよ.
(2)方程式$3^{2x}-2 \cdot 3^{x+1}=27$を解け.
(3)$\displaystyle \sin \alpha=\frac{1}{3},\ \cos \beta=-\frac{1}{2}$のとき,$\sin (\alpha+\beta)$,$\cos (\alpha-\beta)$,$\tan (\alpha-\beta)$の値を求めよ.ただし,$\displaystyle 0<\alpha<\frac{\pi}{2}$,$\displaystyle \frac{\pi}{2}<\beta<\pi$とする.
(4)多項式$P(x)$を$(x-5)$,$(x-7)$で割った余りがそれぞれ$3,\ 4$である.このとき,$P(x)$を$(x-5)(x-7)$で割った余りを求めよ.
横浜市立大学 公立 横浜市立大学 2011年 第1問
以下の問いに答えよ.

(1)関数
\[ f(x)=x \sin^2 x \quad (0 \leqq x \leqq \pi) \]
の最大値を与える$x$を$\alpha$とするとき,$f(\alpha)$を$\alpha$の分数式で表すと$[$1$]$となる.
(2)多項式
\[ a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2 \]
を因数分解すると$[$2$]$となる.
(3)$N$を与えられた自然数とし,$f(x)$および$g(x)$を区間$(-\infty,\ \infty)$で$N$回以上微分可能な関数とする.$f(x)$と$g(x)$から定まる関数を次のように定義する.$t$を与えられた実数として,
\[ \begin{array}{lll}
(f *_t g)(x) &=& \sum_{k=0}^N \displaystyle\frac{t^k}{2^k k!} f^{(k)}(x)g^{(k)}(x) \\
&=& \displaystyle f(x)g(x)+\frac{t}{2}f^\prime(x)g^\prime(x)+\cdots +\frac{t^N}{2^N N!} f^{(N)}(x)g^{(N)}(x)
\end{array} \]
とおく.ここに,$f^{(k)}(x)$は$f(x)$の第$k$次導関数である($g^{(k)}(x)$も同様である).$a$を実数,$n$を$N$以下の自然数とする.$f(x)=e^{2ax}$,$g(x)=x^n$にたいし,二項定理を用いて$(f *_t g)(x)$を計算すると$[$3$]$となる.
(4)関係式
\[ f(x)+\int_0^x f(t)e^{x-t} \, dt=\sin x \]
をみたす微分可能な関数$f(x)$を考える.$f(x)$の導関数$f^\prime(x)$を求めると,$f^\prime(x)=[$4$]$となる.$f(0)=[$5$]$であるから$f(x)=[$6$]$となる.
横浜市立大学 公立 横浜市立大学 2011年 第3問
平面上の点$\mathrm{A}$を中心とする半径$a$の円から,中心角が${60}^\circ$で$\mathrm{AP}=\mathrm{AQ}=a$となる扇形$\mathrm{APQ}$を切り取る.つぎに線分$\mathrm{AP}$と$\mathrm{AQ}$を貼り合わせて,$\mathrm{A}$を頂点とする直円錐$K$を作り,これを点$\mathrm{O}$を原点とする座標空間におく.

$\mathrm{A}$,$\mathrm{P}$はそれぞれ$z$軸,$x$軸上の正の位置にとり,扇形$\mathrm{APQ}$の弧$\mathrm{PQ}$は$xy$平面上の$\mathrm{O}$を中心とする円$S$になるようにする.
また弦$\mathrm{PQ}$から定まる$K$の側面上の曲線を$C$とする.
(図は省略)
以下の問いに答えよ.

(1)$S$の半径を$b$とする.$S$上の点$\mathrm{R}(b \cos \theta,\ b \sin \theta,\ 0) (0 \leqq \theta \leqq 2\pi)$に対し,$K$上の母線$\mathrm{AR}$と$C$の交点を$\mathrm{M}$とする.$b$と線分$\mathrm{AM}$の長さを$a$と$\theta$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OM}}$を$xy$平面に正射影したベクトルの長さを$r$とする.$r$を$a$と$\theta$を用いて表し,定積分
\[ \int_0^{2\pi} \frac{1}{2} \{r(\theta)\}^2 \, d\theta \]
を求めよ.ただし,ベクトル$\overrightarrow{\mathrm{OE}}=(a_1,\ a_2,\ a_3)$を$xy$平面に{\bf 正射影したベクトル}とは$\overrightarrow{\mathrm{OE}^\prime}=(a_1,\ a_2,\ 0)$のことである.
奈良県立医科大学 公立 奈良県立医科大学 2011年 第3問
$a,\ b$を実数とする.

(1)定積分
\[ I(a,\ b)=\int_{-\pi}^\pi (1+a \sin x+bx)^2 \, dx \]
を求めよ.
(2)$a,\ b$が実数全体を動くとき,$(1)$の定積分$I(a,\ b)$を最小にするような実数の組$(a,\ b)$がただ一組存在することを示し,そのような$(a,\ b)$及び$I(a,\ b)$の最小値を求めよ.
釧路公立大学 公立 釧路公立大学 2011年 第1問
$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さを,それぞれ$a,\ b,\ c$で表し,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさを,それぞれ$A,\ B,\ C$で表す.$\sin A:\sin B:\sin C=7:8:3$が成立しているとき,以下の各問に答えよ.

(1)$\cos A,\ \cos B,\ \cos C$の値の中で,最大値を求めよ.またそのときの,正接の値を求めよ.
(2)$\sin A,\ \sin B,\ \sin C$の値の中で,最大値を求めよ.
(3)$b=4$とする.$\angle \mathrm{A}$の二等分線が辺$\mathrm{BC}$と交わる点を$\mathrm{P}$とするとき,線分$\mathrm{AP}$の長さを求めよ.
(4)$(3)$のもとで,$\triangle \mathrm{ABC}$の外接円の半径と,内接円の半径を求めよ.
京都大学 国立 京都大学 2010年 第5問
$a$を正の実数とする.座標平面において曲線$y=\sin x\ (0 \leqq x \leqq \pi)$と$x$軸とで囲まれた図形の面積を$S$とし,曲線$\displaystyle y=\sin x\ (0 \leqq x \leqq \frac{\pi}{2})$,曲線$\displaystyle y=a\cos x\ (0 \leqq x \leqq \frac{\pi}{2})$および$x$軸で囲まれた図形の面積を$T$とする.このとき$S:T=3:1$となるような$a$の値を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。