タグ「三角比」の検索結果

165ページ目:全1924問中1641問~1650問を表示)
神戸薬科大学 私立 神戸薬科大学 2011年 第1問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)$(x+1)(y+1)(xy+1)+xy$を因数分解すると$[ ]$である.
(2)$0 \leqq x \leqq \pi$のとき,$2 \sin x=1$を満たす$x$は$x=[ ]$である.
(3)$L=\log_a b \times \log_b c \times \log_c a$の値を計算すると$L=[ ]$である.
(4)$|m^2-30|<20$を満たす整数$m$は全部で$[ ]$個ある.
(5)$4$次方程式$x^4+ax^3+(a+3)x^2+16x+b=0$の解のうち$2$つは$1$と$2$である.このとき,$a=[ ]$,$b=[ ]$であり,残りの解は$[ ]$と$[ ]$である.
大阪薬科大学 私立 大阪薬科大学 2011年 第1問
次の問いに答えなさい.

(1)$(x+y+1)^{10}$の展開式で,$x^5y^3$の係数は$[ ]$である.
(2)$1 \cdot 2+2 \cdot 3+3 \cdot 4+4 \cdot 5+\cdots +n(n+1)=[ ]$である.ただし,$n$は正の整数である.
(3)$\triangle \mathrm{ABC}$において,$\displaystyle \sin B \sin C=\frac{3bc}{4a^2}$が成り立つとき,$A=[ ]$である.ただし,$A=\angle \mathrm{CAB}$,$B=\angle \mathrm{ABC}$,$C=\angle \mathrm{BCA}$,また,$a=\mathrm{BC}$,$b=\mathrm{CA}$,$c=\mathrm{AB}$である.
(4)$a,\ b,\ s,\ t$を$1$でない正の実数とし,$\log_a s+\log_b t=3$,$\log_s a+\log_t b=4$が成り立つとき,$(\log_a s)(\log_b t)$の値は$[ ]$である.
(5)$x$を$0$でない実数とするとき,関数$\displaystyle f(x)=\left( x+\frac{1}{x} \right)^2-\left( x+\frac{1}{x} \right)$の最小値を調べなさい.
大阪薬科大学 私立 大阪薬科大学 2011年 第2問
次の問いに答えなさい.

原点を$\mathrm{O}$とする$xy$座標平面上に,$2$点$\mathrm{P}(1,\ 2)$,$\mathrm{Q}(2,\ 0)$がある.$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を通る$2$次関数のグラフを$C$,また,$C$の$\mathrm{O}$における接線を$\ell$とする.

(1)$C$の方程式は,$y=[ ]$である.
(2)$C$と$x$軸で囲まれる図形の面積は$[ ]$である.
(3)$\ell$の方程式は,$y=[ ]$である.
(4)$\ell$と線分$\mathrm{OP}$のなす角を$\theta$とするとき,$\tan \theta=[ ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(5)$C$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる曲線を$C^\prime$とする.$\ell$が$C^\prime$の接線であるとき,$a,\ b$が満たす条件を求めなさい.
京都薬科大学 私立 京都薬科大学 2011年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$\displaystyle \frac{1}{1+\displaystyle\frac{2}{1+\displaystyle\frac{3}{1+\displaystyle\frac{4}{1+\displaystyle\frac{5}{6}}}}}$を簡単にすると,$\displaystyle \frac{[ ]}{[ ]}$となる.

(2)整式$x^{2011}$を$x^2+1$で割った余りは,$[ ]$となる.
(3)対数方程式$\log_{x-1}(x^3-3x^2-x+3)=2$を解くと,$x=[ ]$となる.
(4)$-{90}^\circ<x<0^\circ$において,$\displaystyle \sqrt{\frac{1+\cos x}{1-\cos x}}=8$のとき,$\displaystyle \tan \frac{x}{2}=[ ]$となる.
(5)第$1$項から第$n$項($n=1,\ 2,\ 3,\ \cdots$)までの和が$3n^2-n$である数列の第$100$項目の数は$[ ]$である.
関西学院大学 私立 関西学院大学 2011年 第2問
座標空間において,原点を$\mathrm{O}$とし,点$\mathrm{A}(1,\ 0,\ 0)$をとる.また,$xy$平面上にあり,中心が原点,半径が$1$の円を$C$とするとき,以下の問いに答えよ.

(1)$C$の$y \geqq 0$の部分にある点$\mathrm{P}$について$\angle \mathrm{AOP}=t (0 \leqq t \leqq \pi)$とする.このとき,点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{Q}$を$\overrightarrow{\mathrm{OQ}}=-\overrightarrow{\mathrm{OP}}$を満たす点とし,点$\mathrm{B}(\sqrt{3},\ 1,\ 1)$をとる.このとき,内積$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{BQ}}$を求めよ.また,$|\overrightarrow{\mathrm{BP}}|^2=m-n \sin (t+\alpha)$となるような定数$\displaystyle m,\ n,\ \alpha \left( \text{ただし,} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$を求めよ.
(3)$\angle \mathrm{PBQ}=\theta$とおくとき,$\cos \theta$の最大値と最小値,およびそれらのときの$t$の値を求めよ.
(4)$\cos \theta$が上で求めた最小値をとるとき,三角形$\mathrm{PBQ}$の面積を求めよ.
津田塾大学 私立 津田塾大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle f(x)=e^{-x}+\int_0^x e^{-(x-t)} \sin t \, dt$とする.このとき,$f^\prime(x)+f(x)=\sin x$が成り立つことを示せ.
(2)座標空間において,原点$\mathrm{O}$と点$\mathrm{A}(1,\ 1,\ 1)$を通る直線を$\ell$とし,原点$\mathrm{O}$を通り直線$\ell$とのなす角が$\displaystyle \frac{\pi}{3}$である直線の$1$つを$m$とする.直線$m$を直線$\ell$のまわりに$1$回転してできる図形を$S$とする.点$\mathrm{P}(x,\ y,\ z)$が$S$上にあるならば,
\[ x^2+y^2+z^2+8xy+8yz+8zx=0 \]
が成り立つことを示せ.
津田塾大学 私立 津田塾大学 2011年 第2問
自然数$n$に対し$\displaystyle S_n=\sum_{k=1}^n \frac{1}{2^k} \sin \left( \frac{k^2 \pi}{4} \right)$と定める.以下の問いに答えよ.

(1)$S_4$を求めよ.
(2)$n$が奇数ならば,$S_{n+1}=S_n$が成り立つことを示せ.
(3)$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
津田塾大学 私立 津田塾大学 2011年 第2問
関数$f(x)=4 \sin 3x+9 \cos 2x$について次の問いに答えよ.

(1)$t=\sin x$として,$f(x)$を$t$の関数で表せ.
(2)$0 \leqq x \leqq \pi$のとき,関数$f(x)$の最大値と最小値を求めよ.
青山学院大学 私立 青山学院大学 2011年 第1問
$0 \leqq \theta \leqq 2\pi$とする.

(1)方程式$\sin 8 \theta=0$の解の個数は$[ ]$である.
(2)方程式$\cos 6 \theta=0$の解の個数は$[ ]$である.
(3)方程式$\sin 14 \theta+\sin 2\theta=0$の解の個数は$[ ]$である.
青山学院大学 私立 青山学院大学 2011年 第4問
実数$a$について,次の定積分を考える.
\[ I(a)=\int_0^{\frac{\pi}{2}} (\sin x-ax)^2 \, dx \]

(1)不定積分$\int x \sin x \, dx$を求めよ.
(2)$I(a)$を求めよ.
(3)$a$が$a \geqq 0$の範囲を動くとき,$I(a)$の最小値を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。