タグ「三角比」の検索結果

163ページ目:全1924問中1621問~1630問を表示)
日本福祉大学 私立 日本福祉大学 2011年 第2問
$0 \leqq \theta<\pi$のとき,方程式$\displaystyle 2 \sin^2 \left( \theta-\frac{\pi}{4} \right)+\sqrt{3} \cos \left( \theta-\frac{\pi}{4} \right)-2=0$を解け.
藤田保健衛生大学 私立 藤田保健衛生大学 2011年 第3問
次の問いに答えよ.

(1)$y=3 \cos x$のグラフ上の$1$点$\displaystyle \left( \frac{\pi}{6},\ \frac{3 \sqrt{3}}{2} \right)$における接線に平行な単位ベクトルを$\overrightarrow{a}=(a_1,\ a_2)$,垂直な単位ベクトルを$\overrightarrow{b}=(b_1,\ b_2)$とすると,$(a_1,\ a_2)=[ ]$,$(b_1,\ b_2)=[ ]$である.
(2)$a_1>0$,$\sqrt{13}(a_1,\ a_2)=(A_1,\ A_2)$とおくとき,行列$A=\left( \begin{array}{cc}
A_1+2 & A_2-2 \\
A_1 & A_2
\end{array} \right)$に対し,連立方程式$A \left( \begin{array}{c}
x \\
y
\end{array} \right)=m \left( \begin{array}{c}
x \\
y
\end{array} \right)$が$(x,\ y)=(0,\ 0)$以外の解をもつとき,定数$m$の値は$[ ]$である.次に行列$A$で表される$1$次変換によって,点$\mathrm{P}(x,\ y)$が点$\mathrm{Q}(X,\ Y)$に移り,ベクトル$\overrightarrow{\mathrm{OP}}$とベクトル$\overrightarrow{\mathrm{OQ}}$が同じ向きになったという.ただし点$\mathrm{O}(0,\ 0)$であり,$x \neq 0$とする.このとき$\overrightarrow{\mathrm{OQ}}=k \overrightarrow{\mathrm{OP}}$となる定数$k$の値は$[ ]$である.さらにこのとき直線$\mathrm{PQ}$の方程式は$y=[ ]$である.
中部大学 私立 中部大学 2011年 第2問
$0<\theta<\pi$における関数$y=\sin^2 \theta+\cos \theta$の最大値を考える.

(1)$t=\cos \theta$としたとき,$y$を$t$の式で表せ.また,$t$のとり得る値の範囲を示せ.
(2)$(1)$で示した範囲を$t$が変化するとき,$y$の最大値と,最大値を与える$\theta$の値を求めよ.
愛知工業大学 私立 愛知工業大学 2011年 第1問
次の$[ ]$を適当に補え.

(1)連続する$4$つの自然数を小さい順に$a,\ b,\ c,\ d$とする.$\displaystyle \frac{ac}{bd}=\frac{5}{8}$のとき,$a=[ ]$である.
(2)袋の中に$0$と書かれたカードが$1$枚,$1$と書かれたカードが$2$枚,$2$と書かれたカードが$3$枚,合わせて$6$枚のカードが入っている.この袋から$1$枚ずつ$4$枚のカードを取り出し,取り出した順に左からカードの数字を書き並べたとき,$2011$となる確率は$[ ]$である.また,$1$枚カードを取り出し,カードを袋に戻すことを$4$回くり返した場合,取り出した順に左からカードの数字を書き並べたとき,$2011$となる確率は$[ ]$である.
(3)数列$\{a_n\}$は関係式$a_1=1$,$\displaystyle 2^{a_{n+1}}=\frac{4^{a_n}}{\sqrt{2}} (n=1,\ 2,\ 3,\ \cdots)$をみたすとする.このとき,$a_3=[ ]$であり,$a_n=[ ]$である.
(4)$\displaystyle \frac{\pi}{2}<\theta<\pi$において,$\tan \theta=-2$のとき,$\cos^2 \theta=[ ]$,$\displaystyle \sin \left( 2\theta+\frac{\pi}{4} \right)=[ ]$である.
(5)$2$次方程式$x^2-kx+9=0$が実数解をもつような実数$k$の範囲は$[ ]$である.このとき,その実数解を$\alpha,\ \beta$とすると,$(\alpha+1)^2+(\beta+1)^2$の最小値は$[ ]$である.
(6)整式$x^3+3x$を$x^2+1$で割った商は$[ ]$であり,余りは$[ ]$である.また,$\displaystyle \int_0^2 \frac{x^3+3x}{x^2+1} \, dx=[ ]$である.
北海道科学大学 私立 北海道科学大学 2011年 第17問
第$2$象限の角$\theta$が$\displaystyle \sin \theta=\frac{\sqrt{5}}{3}$を満たしている.このとき$\cos \theta=[ ]$,$\cos 2\theta=[ ]$である.
東北工業大学 私立 東北工業大学 2011年 第2問
三角形$\mathrm{ABC}$があり,各辺の長さは$\mathrm{BC}=2 \sqrt{13}$,$\mathrm{CA}=2 \sqrt{10}$,$\mathrm{AB}=2 \sqrt{5}$である.このとき,

(1)$\displaystyle \cos A=\frac{\sqrt{[ ]}}{10}$である.
(2)三角形$\mathrm{ABC}$の面積は$[ ]$である.
(3)頂点$\mathrm{A}$から辺$\mathrm{BC}$に垂線を引き,この垂線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.$\angle \mathrm{BAD}=\theta$とすれば,$\displaystyle \sin \theta=\frac{[ ] \sqrt{65}}{65}$である.
(4)辺$\mathrm{BC}$の中点を$\mathrm{E}$とすれば,線分$\mathrm{AE}$の長さは$\sqrt{[ ]}$である.
(5)$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,線分$\mathrm{CF}$の長さは$4 \sqrt{13}-2 \sqrt{[ ]}$である.
東北医科薬科大学 私立 東北医科薬科大学 2011年 第2問
中心が$\mathrm{O}$で半径$1$の円上の点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対し
\[ \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+4k \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \quad{(零ベクトル)} \]
を満たす実数$k$が存在するという.このとき,次の問に答えなさい.

(1)特に$k=0$のとき$\mathrm{AB}=[ア]$である.
以下$0<k$とする.
(2)$\angle \mathrm{AOB}=\theta$とおく.$0<\theta<\pi$とするとき,$\displaystyle k=\frac{[イ]}{[ウ]} \cos \frac{\theta}{[エ]}$が成り立つ.
(3)$F=\mathrm{AB}^2+\mathrm{BC}^2+\mathrm{CA}^2$を$k$の式で表すと
\[ F=[オカキ] k^2+[ク] k+[ケ] \]
である.
(4)$F$は$\displaystyle k=\frac{[コ]}{[サ]}$のとき最大値$[シ]$をとる.
久留米大学 私立 久留米大学 2011年 第2問
次の関係を満たす関数を求めよ.ただし,$n$は$n \geqq 0$である整数とする.

(1)$f_0(x)=\sin x$,$\displaystyle f_{n+1}(x)=\sin x+\int_0^\pi \frac{2t}{\pi^2} f_n(t) \, dt$を満たす関数は$f_n(x)=[$2$]$である.
(2)$f_0(x)=x+1$,$x^2 f_{n+1}(x)=x^3+\int_0^x tf_n(t) \, dt$を満たす関数は$f_n(x)=[$3$]$である.
大同大学 私立 大同大学 2011年 第3問
原点$\mathrm{O}$を中心とする半径$3$の円を$C$とする.点$\mathrm{A}(5 \sqrt{2},\ 2 \sqrt{2})$を通り円$C$に接する直線で傾きが正のものを$\ell$とし,$C$と$\ell$の接点を$\mathrm{P}$とする.

(1)$\mathrm{OA}$,$\mathrm{AP}$を求めよ.
(2)直線$\mathrm{OA}$と$x$軸のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\angle \mathrm{OAP}=\beta$とおく.$\tan \alpha$,$\tan \beta$を求めよ.
(3)$\ell$の傾きを求めよ.
大同大学 私立 大同大学 2011年 第5問
次の問いに答えよ.

(1)$\displaystyle \frac{x^3(x-1)^2}{x^2+1}=x^3+px^2+qx+r+\frac{s}{x^2+1}$をみたす定数$p,\ q,\ r,\ s$の値を求めよ.
(2)置換積分法により,$x=\tan \theta$とおいて$\displaystyle \int_0^1 \frac{dx}{x^2+1}$の値を求めよ.
(3)$\displaystyle \frac{x^3(x-1)^2}{x^2+1} \geqq \frac{x^3(x-1)^2}{k} (0 \leqq x \leqq 1)$をみたす最小の正の定数$k$の値を求めよ.
(4)上の$(1)$,$(2)$,$(3)$の結果を使って,$\displaystyle \pi<\frac{63}{20}$を示せ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。