タグ「三角比」の検索結果

162ページ目:全1924問中1611問~1620問を表示)
神奈川大学 私立 神奈川大学 2011年 第1問
次の空欄を適当に補え.

(1)円$x^2+2x+y^2-6y-6=0$の半径は$[ア]$であり,中心の座標は$[イ]$である.

(2)$\displaystyle 2 \log_84+\log_3 \sqrt{15}-\frac{1}{\log_59}$を計算すると$[ウ]$である.

(3)$0 \leqq x<2\pi$とする.方程式$\cos 2x-5 \cos x+3=0$を解くと,$x=[エ],\ [オ]$である.
(4)$0,\ 1,\ 2,\ 3,\ 4$の$5$つの数字から同じ数字を繰り返し使わずに作れる$3$桁の偶数は全部で$[カ]$個ある.
神奈川大学 私立 神奈川大学 2011年 第3問
座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円$C$に,この円の外にある点$\mathrm{P}$から$2$本の接線をひき,それらのなす角のうち$C$を挟むものの大きさを$\theta$とする.さらに,線分$\mathrm{OP}$の長さを$r$とする.このとき,次の問いに答えよ.

(1)$\displaystyle \cos \frac{\theta}{2}$を$r$を用いて表せ.

(2)$\cos \theta$を$r$を用いて表せ.

(3)$\displaystyle \theta=\frac{\pi}{3}$を満たす点$\mathrm{P}$の軌跡を求めよ.

(4)$\displaystyle \frac{\pi}{3} \leqq \theta \leqq \frac{2\pi}{3}$を満たす点$\mathrm{P}$の存在する領域の面積を求めよ.
(図は省略)
広島修道大学 私立 広島修道大学 2011年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)円$x^2+y^2=30$上の点$\mathrm{P}(5,\ \sqrt{5})$における接線の方程式は$[$1$]$である.
(2)$\displaystyle \frac{5x+3}{x^2+7x-18}=\frac{a}{x-2}+\frac{b}{x+9}$が$x$についての恒等式であるとき,$a=[$2$]$,$b=[$3$]$である.
(3)$\displaystyle \sin (\alpha+\beta)=\frac{3}{4},\ \sin (\alpha-\beta)=\frac{1}{4}$であるとき,$\sin \alpha \cos \beta$の値は$[$4$]$,$\cos \alpha \sin \beta$の値は$[$5$]$,$\sin^2 \alpha+\cos^2 \beta$の値は$[$6$]$である.
(4)$7$人が円形のテーブルに着席する方法は$[$7$]$通りある.
(5)さいころ$3$個を同時に投げるとき,そのうち同じ目が出るさいころが$2$個だけである確率は,$[$8$]$である.また,さいころ$4$個を同時に投げるとき,少なくとも$2$個のさいころが同じ目である確率は,$[$9$]$である.
(6)連立方程式
\[ \left\{ \begin{array}{l}
\sqrt{x}+2 \log_{10}y=3 \\
x-3 \log_{10}y^2=1 \phantom{e^{[ ]}}
\end{array} \right. \]
を満たす$x,\ y$の値は$x=[$10$]$,$y=[$11$]$である.
広島修道大学 私立 広島修道大学 2011年 第1問
次の各問に答えよ.

(1)女子$5$人,男子$3$人が横$1$列に並ぶとき,女子が両端にくるような並び方は何通りあるか.また,女子$5$人が続いて並ぶような並び方は何通りあるか.
(2)放物線$y=x^2+ax+b$は$2$点$\mathrm{A}(0,\ -3)$,$\mathrm{B}(2,\ 5)$を通る.このとき,この放物線と$2$点$\mathrm{B}$,$\mathrm{C}(-2,\ -3)$を通る直線で囲まれた図形の面積を求めよ.
(3)$0 \leqq x \leqq \pi$のとき,方程式$8 \cos^4 x-16 \cos^2 x-6 \sin^2 x+9=0$を解け.
広島修道大学 私立 広島修道大学 2011年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
x-2>0 \\
2x-6 \leqq 0
\end{array} \right. \]
の解は$[$1$]$である.
(2)$x^3-4x^2+5x+2$を$x-4$で割った余りは$[$2$]$である.
(3)$f(x)=x^2+ax+b,\ g(x)=x^2+2ax+b$とする.放物線$y=g(x)$の頂点の座標が$\displaystyle \left( \frac{8}{3},\ \frac{26}{9} \right)$であるとき,$a=[$3$]$,$b=[$4$]$である.また,$2$つの放物線$y=f(x)$,$y=g(x)$および直線$x=\sqrt{3}$で囲まれた図形の面積は$[$5$]$である.
(4)$\triangle \mathrm{ABC}$において$\displaystyle \angle \mathrm{B}=\frac{\pi}{12}$,$\mathrm{BC}=1$,$\mathrm{AB}=2$のとき,$\mathrm{AC}^2=[$6$]$,$\sin^2 A=[$7$]$である.
(5)$2$次方程式$3x^2+2x+15=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2=[$8$]$,$\displaystyle \frac{\alpha+i \beta}{\alpha-i \beta}-\frac{\alpha-i \beta}{\alpha+i \beta}=[$9$]$である.
(6)$1$から$15$までの異なる$15$個の自然数の中から,$4$個の異なる数をとって組を作る.このとき,偶数だけからなる組は$[$10$]$通りあり,偶数を少なくとも$1$個含む組は$[$11$]$通りある.
北海道文教大学 私立 北海道文教大学 2011年 第4問
$0^\circ \leqq \theta \leqq 45^\circ$のとき,関数$\displaystyle y=\frac{1}{\cos^2 \theta}-2 \tan \theta-1$について,次の問いに答えなさい.

(1)この関数の最大値を求め,そのときの$\theta$も求めなさい.
(2)この関数の最小値を求め,そのときの$\theta$も求めなさい.
北海道文教大学 私立 北海道文教大学 2011年 第1問
次の問いに答えなさい.

(1)$2x^3-16$を因数分解しなさい.
(2)$\sqrt{7-\sqrt{48}}$の二重根号をはずして簡単にしなさい.
(3)不等式$x-4<-3x+2 \leqq x+6$を解きなさい.
(4)$2$次方程式$3x^2-6x+1=0$の実数解の個数を求めなさい.
(5)$\tan \theta=-3 (0^\circ \leqq \theta \leqq 180^\circ)$のとき,$\cos \theta$の値を求めなさい.
(6)$6$人の生徒を$2$人ずつ$3$組に分ける分け方は何通りあるか求めなさい.
北海道医療大学 私立 北海道医療大学 2011年 第2問
以下の問に答えよ.

(1)次の値を求めよ.
\[ \begin{array}{lllll}
① \log_2 36-\log_2 9 & & ② \log_3 \sqrt{729} & & ③ 4^3 \times (2^3)^{-2} \\
④ \sqrt[3]{3} \div \sqrt{9} \times \sqrt[4]{27} & & ⑤ \sin 225^\circ & & ⑥ \tan 210^\circ \phantom{\frac{[ ]}{1}}
\end{array} \]
(2)正の整数の集合$A,\ B$がある.ここで$A=\{2n \;|\; 10 \leqq 2n \leqq 200,\ n \text{は正の整数} \}$,$B=\{ m^2 \;|\; 10 \leqq m^2 \leqq 200,\ m \text{は正の整数} \}$である.

(i) 集合$A$の要素の個数を求めよ.
(ii) $n$を正の整数とするとき,和$S=1+2+\cdots +n$を求めよ.
(iii) 集合$A$の要素の総和を求めよ.
\mon[$\tokeishi$] 集合$B$の要素の個数を求めよ.
\mon[$\tokeigo$] 集合$A \cap B$の要素の個数を求めよ.
\mon[$\tokeiroku$] 集合$A \cup B$の要素の個数を求めよ.
\mon[$\tokeishichi$] 集合$A \cup B$から要素を$1$個取り出すとき,それが集合$A \cap B$の要素である確率を求めよ.
北星学園大学 私立 北星学園大学 2011年 第4問
$\triangle \mathrm{ABC}$について,以下の問に答えよ.

(1)$\sin^2 B+\sin^2 C=\sin^2 A$のとき,$\angle \mathrm{A}$の大きさを求めよ.
(2)$\sin^2 B+\sin^2 C>\sin^2 A$のとき,$\angle \mathrm{A}$が鋭角であることを証明せよ.
愛知学院大学 私立 愛知学院大学 2011年 第2問
$0 \leqq \theta<2\pi$のとき,方程式$\cos 2\theta-(2+\sqrt{3}) \cos \theta+(1+\sqrt{3})=0$を解きなさい.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。